THE MOMENT PROBLEM FOR UNIMODAL DISTRIBUTIONS

By N. L. JounsoN anp C. A. RoGERs
University College, London
Summary. Certain inequalities are obtained for the moments of unimodal
distributions.

1. Introduction. Let n be one of the numbers 3, 5, 7, ---, or + . Let a
real number u, be given for each integer r with 1 < r < n. It is known ([1],
Chap. III, Sec. 8-12; [2]) that, if there is a (cumulative) distribution function
F(z) such that

@ [ @ dr@ =, 1<r<n,

then
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for all integers s with 2 < 2s < n. Conversely, it is known ([1], loc. cit.; [2]) that if
(2) is satisfied with strict inequality for all integers s with 2 < 2s < n, then
there is a distribution function F(z) satisfying (1).
We say that a distribution function F(z) is unimodal, with mode M, if, for all
real numbers z;, -, x4 satisfying

3) <1 <M< <4,
we have
F(§{z + 22}
F(3{zs + x4}

We prove the following theorem.

TueoreM 1. Let n be one of the numbers 3,5,7, - -+ , or + «. Let a real number
ur be given for each integer r with 1 < r < n. Then there is a unimodal distribution
function F(z) with mode zero and with

[F(z1) + F(x)],

3[F (xs) + F(z4)].

) <
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(5) f 2 dF(z) = u., 1<r<n,

if and only if there is a distribution function G(x) such that

(6) _[ 2 dG(x) = (r + Dp,, 1<r<n.
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By use of the special cases n = 3 and n = 5 of this theorem we obtain the
following results.

THEOREM 2. Let m, M and o be real numbers, ¢ being positive. Then there will
be a unimodal distribution function with mean m, mode M, and standard deviation o
if and only if

@ (m — M)* < 34"

THEOREM 3. Let 81 and B be real numbers, B, being nonnegative. Then there
will be a unimodal distribution function with first and second moment-ratios 3; and
B2 , respectively, if and only if

8) 568; — 9 > v(24By),
where, for all real y, v(y) denotes the largest number x satisfying
9) 9a' — 2ya’ — 36ya’ + 36y°x + 36y — 6y° = 0.

It follows from Theorem 3 that a distribution cannot be unimodal if its
(81, B2) point falls in the region bounded by the @B;-axis, the limiting line
B: — B1 — 1 = 0, and the curve given by

(10) 56: — 9 = v(248.).

This curve meets the B;-axis at the point (0, 9/5). As 8, increases, 8, decreases
until the point (27/512, 27/16) is reached. Thereafter 8, increases with 8; and
the curve is asymptotic to the line

(11) 608, — 648, — 81 = 0.
The curve is given parametrically by

108¢*

2 —
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(12) B =

2. Proof of Theorem 1. We first suppose that F(z) is a unimodal distribution
function satisfying the conditions (5), and having mode zero. Then the conditions
(4) are satisfied for all z;, --- , x4 satisfying (3) with M = 0. Thus F(z) is a
nondecreasing function which is convex for £ < 0 and concave for x > 0. It
follows that the one-sided differential coefficients F (z), Fi(x) exist for all
nonzero values of x, and are equal except possibly for an enumerable number of
values of z (see [3]). We define a function f(z) by the equations

) = 0;
flz) = Fi(x), x # 0.

Then f(z) is a nonnegative function which is nondecreasing for # < 0 and which
is nonincreasing for £ > 0. Further, if I is any closed bounded interval not
containing the point x = 0, the incremental ratio {F(y) — F(x)}/(y — x) is
bounded for all distinet points z and y of I (see [3], pp. 91-96). Hence F(z) is

(13)
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absolutely continuous in I/ and thus is an indefinite integral of f(zx) in I. Thus,
if we write

F(—=0), x<0,
(14) j@) = 1F(0), z =0,
F(+0), x>0,

we have
(15) F@ = [ 10 d + i@
for all .

From the monotonicity properties of f(x) we have

o <2 | [ o) =2 [ fare ),

so that by the convergence of the integrals in (5)
(16) 2 f(z) >0 as x— Fow
for all r < n.

Now consider the function G(z) defined by
17) Gx) = F(x) — zf(z).

From (16), G(—z) — 0 and G(z) — 1 as ¢ — + . Also from (15),

(18) 6@ = [ 10 - 1@} & + i),

so that G(x) is a nondecreasing function of z. Hence G(x) is a distribution
function.

Let » be an integer with 1 < r < n and let X and Y be positive numbers.
Then

f; « di(x) = f_: 2’ dF (x) — f_i 2 d {af(x))

(19) = [[ @ ar@ - &P @LE + [ ws ar

=0+ 1 [ & dF@ - YY) + (X=X,

the integration by parts being justified since zf(x) is of bounded variation by
(17), and the final step being justified by (15). Hence, using (16) and (5),

(20) /_m 2’dG(x) = (r + 1) f_w dF(x) = (r + Dy,

for all r with 1 < r < n. This proves the second assertion of the theorem.
We note that, since F(z)/z is absolutely continuous in every closed bounded
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interval not including the point z = 0, it follows by (17) that the function F(z)
is given in terms of G(z) by

—z w £76(0) de, z <0,
(21) F(z) = G(0), z =0,
| @ f " e @ z >0,

or, on integration by parts, by
[: (1 — =™ dQ(®, z <0,
(22) F&) = G0, » z =0,
1 - f, ) 1 -zt da®), z > 0.

We now prove the first assertion of the theorem. Suppose that there exists a
distribution function G(z) with

(23) [ 7 6@ = (r + Day, 1<r<n

Let F(z) be the corresponding function defined by the equation (22). Then it is
clear that F(x) is a nondecreasing function of x and that F(—z) — 0 and F(z) — 1
as £ — -+ . Hence F(z) is a distribution function. Also, if a, h, b, k are any
real numbers with
a—h<a<a+h<0<b—k<b<b+ik,
then
F(a + k) — 2F(a) + F(a — h)

24 . o
. =[fa-n-0a@+ [ e-a-nd® 20,

and a similar argument shows that
(25) F(b+ k) —2F®b) + Fb — k) <0.

Hence the conditions (4) are satisfied whenever z,, ---, x4 satisfy (3) with
M = 0. Thus F(z) is a unimodal distribution function with mode at z = 0.
Now, if z < 0,

F@ = [ (- =™ 6@

(26) = L { fe C(-£ dn} e (®
- [ e aow) an
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and similarly, if > 0,
(27) P@ =1 - [{[ a0 m
x n

Consequently

ﬁfﬁ@=[bﬂ:eﬁmmﬁm+[n%ffwmﬁm
_ f_: (_5—1){/: 2 da:} dG® + fom g-l{f: . dx} a6 ®
= e+ 07 [ £d60 =,

for all » with 1 < » < n. Thus F(z) is a unimodal distribution with mode zero,
satisfying (5). This completes the proof of the theorem.

By combining Theorem 1 with the results quoted in Section 1 we obtain the
following

CoOROLLARY. If there is a unimodal distribulion function F(x) with mode zero
and with

0

(28) fwx' dF () = u,, 1<r<m,
the condition
1 2m oo (8 Dus
21y 3use e (8 + 2),us+1
(20) : : >0
(s + Dpo (5 + uoys -+ (25 + Dpe |

18 satisfied for each integer s with 2 < 2s < m. Conversely, if (29) vs satisfied with
strict tnequality for all integers s with 2 < 2s < n, then there 1s a unimodal distribu-
tion function F(x) having mode zero and satisfying (28).

3. Proof of Theorem 2. First suppose that there is a unimodal distribution
function with mean m, mode M and standard deviation ¢. Then there is a uni-
modal distribution function F(zx) having mode zero and satisfying (5) with

(30) n=3 m=m-M, " uz=‘02+(m—M)2~
So by the case n = 3 of the Corollary to Theorem 1 we have
1 2(m — M)

’

2m — M) 30" + 3(m — M)* |
that is,
(m — M)* < 36"
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Now suppose that m, A and ¢ are real numbers, with ¢ > 0, satisfying (7).
To prove the existence of a unimodal distribution with mean m, mode M and
standard deviation ¢, it clearly suffices to prove the existence of a unimodal
distribution function F(z) having mode zero and satisfying (5) when the condition
(30) is satisfied. Hence, by Theorem 1 it suffices to prove the existence of a
distribution function G(z) with 2(m — M) and 3¢* + 3(m — M)* for its first
and second moments, respectively. Since

36> + 3(m — M) > {2(m — M)}*

by (7), the existence of such a function G(z) is clear. This proves the theorem.

4. Proof of Theorem 3. We first state without proof an elementary algebraic
lemma.

Lumma. Let 8y, B be real numbers with 8, > 0. Suppose that there is a real
number 8§ satisfying

(31) 3-5>0,

(32) (3 — 8)(56: — 9 — 45v/B1) = 1685
then

(33) 56: — 9 > v(24B),

where v(y) 1s the function defined in the statement of Theorem 3. Conversely, if
(33) s satisfied with strict inequality, then there is a real & satisfying (31) and
satisfying (32) with strict inequality.

Now suppose that there is a unimodal distribution function with first and
second moment-ratios 8, and 8; respectively. Then there is a unimodal distribu-
tion function H(x) with the numbers 0, 1, /B;, 8. as its first four moments.
Let & be the mode of H(z). Then the function F(z) = H(xz + §) is a unimodal
distribution function with mode zero and moments

mo=—8 m=1+08 wm=p — 37,
#4=Bz_4:5\/,8~1+662+64.

So these numbers g, , - - -, w4 satisfy the condition (29) for s = 1 and fors = 2.
These conditions reduce to the inequalities

(35) 3-8 >0,
(36) (8 — (58, — 9 — 46/By) > 166 .

When 3 — §° > 0 it follows from the Lemma that the condition (8) is satisfied.
When 6 = 4=+/3 we note that the function G(x) defined in the proof of Theorem 1
has first and second moments 2u = F2+/3, 3wz = 12, and so has standard
deviation zero. Thus the rth moment of G(z) is (r + Du, = (F4/3)". This
implies that 8, = 0, 8, = 9/5, so that the inequality (8) is satisfied in this case.

(34)
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Now suppose that (8) is satisfied. First consider the case when (8) is satisfied
with strict inequality. Then by the Lemma there is a number 6 satisfying the
conditions (35) and (36) with strict inequality. Hence the numbers p; , *-- , s
defined by (34) satisfy the condition (29) with strict inequality for s = 1 and
for s = 2. So by the Corollary to Theorem 1 there is a unimodal distribution
function with moments p;, -, us satisfying (34). This unimodal distribution
function has @8, and B for its first and second moment-ratios.

We have finally to consider the case when (8) is satisfied with equality. Since
the function 108 ¢*'(1 — ¢)™* (1 + 3¢)~? increases from the value 0 and tends to
+ » as g increases from 0 and tends to 1, we can choose a number g with0 < ¢ < 1
such that

37) B = 108¢'(1 — ¢)7(1 + 39)™"

Then, since (8) is satisfied with equality, we have

(38) 58 — 9 = 72¢°(3¢ — )1 — 971 + 3¢9)%

It is not difficult to verify that the distribution function F(z) defined by
0, z <0,

(39) Fi)=<q¢+ 0 —-q9z, 0Lz<L1,
1, z>1,

has 8; and B, for its first and second moment-ratios. This completes the proof
of the theorem.
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