ON THE THEORY OF SYSTEMATIC SAMPLING, III. COMPARISON
OF CENTERED AND RANDOM START SYSTEMATIC SAMPLING!

By WiLLiam G. MaApow

University of Illinois

1. Summary. The main result obtained is the following: If a population has
monotone decreasing correlogram, then centered systematic sampling is more
efficient than random start systematic sampling. It is also shown that if a
population is monotonic, then centered systematic sampling is more efficient
than random start systematic sampling, but here it is easy to cite cases in which
stratified random sampling is more efficient than either. Thus, centered system-
atic sampling is more efficient than random start systematic sampling, in the
conditions {namely, concave upwards and decreasing correlogram) in which
Cochran [1] proved that random start systematic sampling is more efficient than
stratified random sampling.

2. Introduction, Types of Sampling Considered. In this paper, we discuss the
theory of centered systematic sampling technique. As is well known, this tech-
nique of selecting samples has long been of practical importance. The theory of
centered systematic sampling should also be valid for random start systematic
sampling with end-corrections (see Yates [5]) since the latter technique in effect
reduces random start systematic sampling to centered systematic sampling.

Inasmuch as the approach used in the demonstrations follows that of earlier
papers by Cochran [1] and the present author [3], [4], notation and proofs are
presented in condensed form.

The elements of the population are z;, 22, -+, vy where N = kn. The ob-
jective is to estimate &, the arithmetic mean of the population, on the basis of
a sample of size n.

The random start systematic sampling estimate, &,, , is the arithmetic mean
of the n elements obtained by selecting one element by an equal probability
selection method from z, , - - - , zx and including in the sample every kth element
thereafter. The arithmetic means of these k¥ possible samples are denoted by
&1, -+, Tr, where Z; is the mean of the sample whose first element is x, . The
variance of Z,, is denoted by o3, expressed in terms of the elements of the popu-
lation. .

If k is odd, the centered systematic sampling estimate, &, , is Zx41)/2 and if k
is even we arbitrarily define, Z. = &2 . (Actually, if k is even, one might either
select k/2 or (k + 2)/2 at random, or one might designate other patterns for se-
lecting the sample elements instead of, as above, designating the elements zy2 ,
Tok/2y *°° y Tnks2 - For example, T/2y T(2+2)/2 y L3k/2 ) L@k42)/2y * " ° would be prefer-
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102 WILLIAM G. MADOW

able in a monotone population. For our present purposes, it is not important to
trgf to determine the best pattern.) The mean square of £, about Z is denoted by
[

In stratified random sampling we consider i,k , Taycink, - -, Tx t0
constitute a stratum, j = 1, - - , n. Hence, there are n strata each consisting of
k elements. We suppose that one element is selected from each of the n strata
by an equal probability selection method. The sample mean is denoted by
£, and the variance of Z,; is denoted by o2, expressed in terms of the elements of
the population.

We use E to denote the taking of the expected value when the elements of the
population are considered to be constants and & to denote the taking of the
expected value when the elements of the population are considered to be random
variables.

Inasmuch as we shall be using the word correlogram somewhat loosely in the
following, the word is now discussed. If z,, - -- , zy is an ordered sequence of
random variables, if p; is the correlation coefficient of two random variables
whose subscripts differ by & (e.g., p» = 04,2,/02,02, , and if the correlation is to
depend only on §, then the function f(8) = p;,8 = 1, --- , N — 1, is often called
the correlogram of the sequence. It is usually assumed that the random variables
have identical mean values and identical variances. However, when we use the
word correlogram in the following, it will refer only to the expected value of the
product zx, which we will assume to depend only on 8 = |7 — h | . Thus, if the
random variables have identical mean values our statements refer to the usual
correlogram but otherwise the condition we state does not assume the identity
of the mean values of the random variables.

3. Monotone populations. Hotelling and Solomons [2] proved that for any
quantities 2;, 22, - - - , 2, , the following inequality is valid
median — arithmetic mean)?
(3.1) o« ; F o1

Z (zz - 2)2

1=al

if all terms are finite and the denominator does not vanish, where, if g is odd
the median has the usual definition, and if ¢ is even, and 2’ and 2” are the two
central quantities, then the median can be any quantity such that 2 < median
< 2”. (The details of their proof are given only for odd g but follow at once for

even g.)
If a population is monotone, then either % < & < -+ < & or & =
Zy = -+ 2 & . Hence, if k is odd, £, is the median of &, , --- , % and, if & is

even, I, is such that Tepe < T, = L42)/2 OF Tyse =T, = T42)/2 - Then (31) be-
comes .

(jc _ i)z
(32) — = =1L

Oy
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Since (&, — %)’ is the mean square error of Z, about £ when the elements of the
population are not random variables, we have proved:

TarOREM 1. If the population is monotone, then centered systematic sampling is
more efficient than random start systematic sampling.

Of course, if a population is monotone, and if the size of sample is sufficiently
large, then stratified random sampling may be more efficient than centered
systematic sampling, since the latter estimate may have a bias that does not
tend to zero sufficiently rapidly as the size of sample increases.

In practise, however, even if a population is monotone, centered systematic
sampling will often be more efficient than stratified random sampling. To see
how this will occur let us define the average variance and average covariance
terms of o7 .

Let

1,2, :--,n.

<.
I

1 k
z = % ; Tit =Dk »
Then o5 = S + C, where,

1 < -
S = o] Z (Tat =y — 1‘:')2,
ne j=1

1 < - -
= 20 @ari-vp — &) @ar v — Zm),
n® jm=1

JFEm
anda = (k + 1)/2if kis odd, a = k/2 if k is even. We call S the average vari-
ance term and C the average covariance term of oo .

By the result of Hotelling and Solomons

C =

. 1¢ . :
Farivp — &)° < 7 2:1 @srr — £) J=1-,n
<

Hence 8 < o2 . Thus, if C < 0% — 8 then o7 < o . In practise, the average
covariance term, C, is often small enough for the above condition on C' to be
satisfied.

4. Populations with monotone decreasing correlograms. (Actually, it is terms
such as (4.1) below that will be assumed to be monotone decreasing.)

We will need the following notation in, this section. Unless specific limits are
stated, the letters 7, h will assume all integral values from 1 through k; the letters
7, m will assume all integral values from 1 through n; the letter v will assume all
integral values from 1 through n — 1; the letter § will assume all integral values
from 1 through &k — 1; and the letter e will assume all integral values from 1
through (% — 1). (In the proof k is assumed to be odd. The case where k is even
introduces further complications and notation without altering the basic re-
sults.) We now suppose that the elements of the population are random vari-
ables, and let
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(4.1) 8L ot (G—ATB+(m—DDk = M(m—k+3 5

whered = 8 — aandj < m. Thus, —(k — 1) =6 = (k — 1).
TaEOREM 2. Under the conditions stated

n—1
(4~2) 80’31{ - 80% = 2]62 Z Z (l-"‘yk-{»e - M(‘Y+1)k—e)
If pp = pe = -+ = pne— and the inequality holds at least once, then centered
systematic sampling is more efficient than random start systematic sampling, while
ifpur S pe S oo = pni—1 and the inequality holds at least once, then the contrary is

true.

Before proving Theorem 2 let us consider some of its implications. Actually
from (4.2) it follows that &¢%, = & if the elements of the population have the
same expected product (4.1) no matter how distant they are, that isif u; = py =

© = pu— . If we assume all elements of the population have the same ex-
pected value then the above statement is made for the serial covariance rather
than the expected product. For example, if the elements of the population have
the same expected values and are uncorrelated, then &s2y = 8o .

Furthermore the conditions stated above under which centered systematic
sampling is less efficient than random start systematic sampling should almost
never be satisfied in practise. In practise, however, irregularities of the cor-
relogram may well lead to the greater efficiency of random start systematic
sampling as compared with centered systematic sampling.

Proor. The demonstration of (4.2) is tedious, but not difficult. Let us begin
by obtaining the following two lemmas.

LemMma 1. If f(z — h) 7s a function of the difference of the integers © and h, then

(4.3) ;hf<i — h) = kf(0) + 26: (k — OIfG) + f(—d)].
Also,
(44) g;ﬂl i —h|) = kf(0) + 2 ; (k — 8)1(5).

The proof is omitted.
LEmMMA 2. Let§ = |1 — h|. Then,of i = h

_ ] 1
(4.5) &T; T, = i + = Z(n — Vigprs + poyr—s),
n s
and
2 o 2
(4~6) &1 = P ; Z’: (n "/)I“vk-

Proor. We now denote i ¢;_n: by z;;. Since &; = (1/n) Zx,-,- , it follows
that i
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_ 1 1 1
8T %y = > E 8xjixiy + pog > &Tjimn + e D &L T
J

j<m i>m

L {#5 + Z 1= [Myk+a + #yk—-a]}-
v

n n
Thus (4.5) is proved. Then (4.6) is a special case.
We return to the proof of Theorem 2. Now, putting
A = &rf,, — 803
it follows that
A= IICZ 8%7 — &% + 28%.% — 284

Since, from Lemma 2, &%; is independent of i, it follows that
= 28 %F — 2 &F.

Now, from (4.4) and (4.5), taking ¢ = ¢ and averaging over h, it follows that

8. = {#o +2X3 = ”w‘}+ %{Z pe + 2 2T e + M-J}.
Y € Y

n n

2

_ 1 - -
& = E2§8$i$h,

and, since by Lemma 2, §%:%, depends only on | ¢ — h |, it follows from Lemma
1, that

1 -
8£2=—7-L76{ﬂo+22n ’Y.Uyk}
v

n
2 — —
ok {‘? : % : ["‘ * ;n 7 e + “*k“‘)}} '

Then
4 €
A=— 7 e — —€
oy Z % (we — mi—d
4 n—vy €
+ n—k ; n ;; l?: [ﬂyk+e + Hyk—e =™ HK(y+1)k—e — #(1—1)k+¢].
Now
n—1
Z (n - 7)[/-"7k+e — ﬂ('y—l)k+e] = —np. + 20 Kyktey
k7 y=
and
n—1

Z (n - 'Y)[#'yk—c - u(~,+1)k—e] = Npk—e — Zo M (y+1)k—e «
¥ 7=
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Hence

n—x €
> 2 [ugpse + Hoykee = By — Mr—Dkte)
¥ n - k

n—1

1
= -ZEG (l-"e - Mk«e) + - Z: _G_ Z (“‘yk+¢ - p'('H-l)k—e)-
€ n e y=0
Thus, (4.2) is proved. Since 1 < ¢ < (k — 1)/2, it follows that pykre = pey1mie
ify 2 p2 = +++ 2 pm—r . Hence A = 0 if the correlogram is monotone decreas-
ing and A > 0 if the correlogram is monotone decreasing and not constant.

6. Comments. It is easy to extend the results of this paper to two-dimensional
statistical sampling and to the sampling of clusters. These topics will be dis-
cussed in following papers.

It is interesting to note that if &x7,(;_y is not assumed to be independent of
J and 7 then the above results will not hold without further assumptions con-
cerning the terms &x7;(j_1y .
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