SEQUENTIAL SAMPLING TAGGING FOR POPULATION
SIZE PROBLEMS!

By Lo A. GoopMAN
The University of Chicago

Summary. Let P be a finite population which may have some subsets of known
size but whose total size N is unknown. We shall consider the problem of point
and interval estimation, tests of hypotheses, and fiducial distributions of N for
some sampling-tagging procedures. The problem of estimating the number of
classes in a population [1}, [2], when it is known that the same number of elements
is contained in each class, may be considered within the general problem
discussed.

1. Introduction. We shall be interested in the following sequential sampling-
tagging procedure S(L, n;). Let {n;} be a sequence of positive integers and let
S(L, n;) denote the procedure whereby :

(1) n, elements are drawn at random from P, the number of elements which
are drawn from subsets of P of known size is observed, the sampled elements
are tagged so that they may be distinguished from the remaining elements, and
replaced in P;

(2) n; elements are drawn from P, the number of tagged elements and ele-
ments drawn from subsets of known size is observed, the sampled elements are
tagged and replaced in P;

3) - ;
this procedure is discontinued when a total of at least L > 0 tagged elements or
elements from the known subsets have been drawn.

The following practical cases are instances of this general procedure. It is
well known that the decennial census is not complete. One would, therefore,
like to estimate the total number actually living in the United States; that is,
consider the problem of finding out how many people were not enumerated in
the census. We would draw a sample of people and investigate how many people
in this sample had been enumerated. We would then list the nonenumerated
people in this sample, draw another sample and investigate how many people
in this second sample had been enumerated in the census or had been listed
in the first sample, . . . ; this procedure is discontinued when a total of at least
L people have been found who had been enumerated in the census or listed in
one of the preceding samples.

Suppose one wished to estimate the total population size two years after the
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1 Most of the results described in this paper were presented to the Summer Seminar in
Statistics at the University of Connecticut, August 22, 1950, and to meetings of the Insti-
tute of Mathematical Statistics at Chicago, Illinois, December 27, 1950.
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census had been taken. One might divide the population into those people who
were enumerated in the census and are still alive, those born since the census
was taken, and then the remaining people. Death records might be used in con-
junction with census records to determine how many people who were enumer-
ated are now dead. Using these results in conjunction with birth records we
might proceed as before—sampling, investigating, listing, resampling, .

In some areas the number of people in some classes of population (e.g., certain
professional groups) is known. We could then use this information and a sam-
pling, investigating, listing, resampling, . . . procedure to estimate the number
of people in that area. One might, of course, wish to estimate the total population
size of an area by these methods without resorting to any previous information.

The question concerning the number of animals of a given kind in a specified
region is often of importance in ecological work. One might set traps in the area
to catch these animals. When the traps are filled the animals are tagged and
released, and the traps are moved and reset. The number of tagged animals
appearing in the traps is then observed, the newly trapped animals are tagged,
released, and we again move and reset the traps, . . ..

Marking methods are also used to estimate insect and fish populations. This
paper studies procedures and estimates which may be of use in such problems.

Another case which is of some archeological interest deals with the problem
of determining how many days there were in the calendar of some ancient
civilization. By observing the days marked on gravestones and dealing with
these days as though they were samples drawn at random from the total popu-
lation of N days in the annual calendar, we might estimate N by observing more
graves and taking note of days which occur more than once (marked elements
reappearing).

In this study, we do not allow for population changes occurring during sam-
pling nor for nonrandom sampling.

If S(L, n;) or a nonsequential fixed number of random samples procedure is
applied, it is found that nondifferentiated tags (similar tags for each sample)
are sufficient for the estimation problem and that the general problem may be
reduced to the nondifferentiated case where P contains no subsets of known size.
Given S(L, n;), there exists a minimum variance unbiased estimator (m.v.u.e.)
of N which may be determined as the quotient of two determinants and simpli-
fied, by combinatorial methods, in special cases. Tables which shorten com-
putation appear in [3]. )

If {n:} is bounded, as N approaches infinity, the limiting distribution of /N,
where ¢ is the total number of elements drawn before the procedure ceases, is
x” with 2L degrees of freedom Calculations indicate that the exact dlst;rlbutlon
differs only slightly from x* when N = 365, n; = 1, L = 1. Using the x* approxi-
mation to the exact distribution, we find that the asymptotic m.v.u.e. of N is
t*/2L, and that approximate one- or two-sided confidence intervals may be
obtained. The approximate fiducial distribution of N is given and certain tests
of hypotheses concerning sizes of one and two populations are considered.
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It is shown that any sequence of successive independent repetitions of the
sequential procedure, S(L:, n:), S(Lz, n:) --- may be improved upon by a
single S(L, n;). The S(L, n;) also compares favorably with other procedures
considered.

A numerical illustration of the procedure S(L, n;) is also presented.

A list of references to discussions of the various practical considerations in-
volved in sampling-tagging programs and of certain results thereof appears in
[4] and [5] where other methods of sampling-tagging are analyzed.

2. Theorems on sufficient statistics and the existence of unbiased estimators.
Let P be a set of N elements and suppose that a notion of equivalence has been
defined so that the elements of P may be said to belong to 7 + 1 different classes

P(), PQ1), P(2),---, P(T). The number of elements in P(j) is N(j),
> 7o N(§) = N, where the value of N(j) is known for all but one class, say P(0).
Let K samples of n; elements, ¢ = 1, 2, -- -, K, be drawn in order from P in

such a manner that, before the ¢th sample is drawn, the n,_; elements appearing
in sample ¢ — 1 are so labeled and then replaced in P. (Henceforth, this pro-
cedure shall be designated by F(K, n;).) Suppose h denotes the history of an ele-
ment; that is, 4 is an index denoting the set of tags which have already been
placed on an element. Let n;(j, h) be the number of elements from class P(j)
which appeared in the ¢th sample with the set of tags corresponding to the Ath
history; n:(j, 1) being the number of elements from class P (j)which first appeared
in the 7th sample. We have

TaEOREM 1. If the sampling-tagging procedure is F(K, n;) then the statistic
> 1 n; (0, 1) ds sufficient for estimating N (0).

Proor. A somewhat stronger result holds; namely, if Pr{n:(j, h); N(), n:, K}
denotes the joint probability function of all possible n:(j, h) (not for a fixed ;7
and h), then

h(K)

(1)  Pr{ni(j, h); N(j), ni, K} = C{ZK: n:(0, 1), N(O)} . ,
= II1 C{n:, N}

=

where henceforth, C{a, b} = b!/(b — a)!, and where A(K) is a functon of
nl(jr h)’ m(jv h)’ T nK(jr h); Ny, Nz, "+, Nk and N(l): N(2)7 Tt N(T)
Equation (1) may be obtained by direct calculations of the probabilities by
means of standard combinatorial methods. The theorem then follows from the
factorization conditions for sufficient statistics.

By Theorem 1, we see that for F(K, n;) no information is gained by tagging
elements appearing from P(1), P(2), - -+, P(T) nor by using different tags for
different samples.

Suppose we consider the general class of procedures where random samples
are drawn from P in such a manner that if it is decided that an sth sample is to
be drawn, the 7n;_; elements of sample ¢ — 1 are first so labeled and replaced in
P before the 7th sample is drawn. The total number z of samples drawn will
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be determined by some stopping rule which may depend on the sample results.
We shall define a sufficient statistic to be one for which the conditional dis-
tribution, when z is fixed, can be factored as usual. Clearly by Theorem 1,
> im0, 1) = uis a sufficient statistic and in estimating N (0) it will be suffi-
cient to use u and z. For some procedures (stopping rules) there may exist a
function g(u) of the total number p of untagged elements drawn from N(0)
which is such that g(u) = z. For such procedures it will be sufficient to use u
in estimating N(0).

COROLLARY 1. Given S(L, n.), then u = D 5110, 1) is sufficient for esti-
mating N(0).

Proor. Let g(u) be the least integer g such that

g
>n =L+
=]

This function g(u) is such that g(u) = z. Q.E.D.

In view of the preceding results, without any loss of generality, we shall,
henceforth, consider the problem of estimating the size of a population, which
is not divided into classes, by means of nondifferentiating tagging methods.
We let u; denote the number of untagged elements drawn in the ith sample of
n; elements.

THEOREM 2. Given S(L, n;), there exists a mintmum variance unbiased estimator
(m.v.u.e.) M(u).

Proor. It is clear that if u = D35 u:, then Pr{u; N, n;} is zero for p > N
and is positive for n; < u < N. Hence, an unbiased estimator M (u) would

satisfy the system of equations

N
(2) N = ?: M) Pr{u; N, ni}

=]
for N = ny,n + 1,n; + 2, - -- . This system of equations defines an estimator
M (u) uniquely since its values can be determined recursively for p = n;, n; + 1,
n + 2, n + 3, -+ . That M(u) is the minimum variance unbiased estimator
follows from Corollary 1 and Blackwell’s result [6] that given any other unbiased
estimate, one can obtain an unbiased sufficient estimate whose variance is at
least as small. The uniqueness of an unbiased sufficient estimate insures that
M(u) is the desired estimate. Q.E.D.

The reader will see by examining the preceding proof that a result similar to
Theorem 2 for somewhat more general procedures than S(L, n;) will still hold.
This result indicates one advantage of sequential procedures since Chapman
([4], pp. 149-150) has shown that no unbiased estimators exist for the procedures
he was considering (fixed number of samples).

COROLLARY 2. For S(L, n;) the m.v.u.e. s

MG 1,m) = 221,
ij

L,j=12 -, p=—m+1,
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where
1, 1 = n— N + 1
o= C(n1+i—1,n1+j—1) ; —_
by = T(nEi=) t<p—m+1
q C(nsy m +.7 - 1)

withb;; = 0 when undefined and a;; = b;j fori <p—ni+ 1,0y n,41,; =m+j—1,
and g(u) 7s as in Corollary 1.

Proor. In view of the proof of Theorem 2, we need only show that M (u; L, n;)
satisfies the system of equations (2). Since the number of samples K is a func-
tion of u, and hence fixed for each u, equation (1) may be used to give

C(u, N
PI‘{M; L) Nr ni} = INM#_)—— h(“'y ne, L)
II ¢, )
8=l
Now since
N
Z Pr {”';LrN’nt} = 1"
p=ny
we have
C(n,,
#ﬂl—_ h(nh nt: L) = 1)
I_Il C (nar nl)
Cny,m + 1 Cni+1,m+ 1
a(nl)( LR ) h(nl, ng, L) + g(nl(+1l) L ) h(nl + ], Ng, L) = 1,
III C(nsy m + 1) Il C(n., m + 1)
C(ny,my + 2 Clm + 1,0 + 2
9(n1) - ) h(nlr Ny, L) + v(n1(+ll) - ) h(n, + 1, n,, L)
III C(n,, m + 2) III Cln,, m + 2)
Clny+ 2,n + 2
+ ﬂ("f-l-?l) : ) h(nl + 2) ng, L) = ]-)
C(n,, ny + 2)
8==1
Using Crumér’s rule, we have
hu, ne, L) = lbt’jl’
| ciil

where
C(n1+z— 1,7L1+J—' 1)

Cij = g(niti-1)

Clng,ma+3—1)

8=1
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fore,j =1,2,---, p — ny + 1 (with ¢;; = 0 when undefined). Suppose M,
is the m.v.u.e. and let

Mllh(/") ng ) L) = f(u'y ng ) L)'
Hence, by equations (2)

y C
> m—(&‘]\Lf(u, n,L) = N
== 1T ¢, N)

g=1

forN=n,m+1,n+2 ---and

’n,L) =]aij|.
f(# t |C{jl

Therefore

M, = Miu; L) = L] Teal _las] ED.
Wi omd = ol Tyl = 5] Q

3. The m.v.u.e. in special cases.
Tueorem 3. For S(L, 1), the m.w.u.e. s

K (u, L)
K(u, L — 1)’
where K(u, L) = pZLl szz-, VD g W+ DY 2, when there are L summa-

tions; for example, K (u, 0) = p, K(g, 1) = p*(u + 1)/2.
In order to prove this result, we first prove

M(; L) =

LEmMma 1.
Zl K(}L L) C(M, N) NL+1,
> K, L)C(“’N) COLMEE-Ls) oy

=t t—1 = Newhet?

Proor. We first consider the special case L = 0. We wish to prove that
Z C(#)N) C(tyN) t = 1,2,"',N.

pan t Ntt? ’

The equality clearly holds for ¢ = N. Now let us suppose the equality holds for
t fixed, and consider ¢ — 1. The left side of the equality becomes

Cit—1,N) Cly, N)
=1 —F=—+ 2_: N
_4_nnCt—-1L,N) , CEN) _NCE—1,N)
= (t 1) Ni—1 + N1 - N1
_Ct—1,N)

Nt—2
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Hence, by inverse mathematical induction we have proven the lemma for the
special case where L = Oandt = 1,2, --- , N. The lemma may now be proved
in the general case by induction on L.

Now the proof of Theorem 3 follows as an application of Lemma 1 and the
methods used to prove Corollary 2.

In general M(u; L) may be expressed as a rational function in ,

2
1 2 _ 1 P 1
Q—L + (5 62) ] + P2 )
where P; and P are polynomials of degree 2L — 1. Using various recursion
relationships, the exact calculation of M(u; L) may be simplified by means of
tables (see [3]).

TrEOREM 4. Consider a modified S(1, n;), where the only change is the addition
of the condition that no more than R samples are to be drawn. Then

CU®R) + 1, N)

M; L) =

E{M(u;n)} =N —

ITctn,, N)
a1
where
. 1, ”‘12 14+tx—1)
Mu;ny) = §|:l (-1 — ;ns + 2t(x — 1):' + F:[m]r

when x is the number of samples drawn before sampling ceased,
z—1 z
u=2;na+#z, t(x) =Zlna-

To show that this theorem is true we first prove
LeEmMA 2. For any positive integers n = A < N, then

4 [na + A) +j] C(N—n—j,N — A)C(,A4)
A—j+1 (N —n —plj!

+ Cn+ 1,N — A)/n! = C(n, N)N/n!l.
Proor. We have the following identity
A+ "™+ yn+ 0+ Dyl = A+ + 0+ 1A+ )"y

The coefficient of 4" " in the expansion of the right side of the identity in powers
of y is

j=A—mn

C(n,N)/(n — 1) + C(n + 1, N)/n! = C(n, N)N/n!,

the right side of the equality stated in Lemma 2. The coefficient of 3"~ in the
expansion of the left side of the identity in powers of y may be seen to be equal
to the left side of the equality in Lemma 2. Hence, the equality is proven. Q.E.D.

We may prove Theorem 4 for the special case R = 2 using Lemma 2 by set-



SEQUENTIAL SAMPLING TAGGING 63

tingd = m,n =mn,andj = n; — ny + u2. We may then proceed to prove
the theorem in general by mathematical induction on R using again Lemma 2.

By this method of proof we also see that M(u; n,) is the m.v.u.e. for the
original S(L, n;). The calculation of M(u; n;) simplifies considerably in the

special case where n; = n3 = ny = .-+ = n (which is of some interest in
applications). Similar kinds of results may be obtained for L = 2, and
Ng = N3 =Ng = *°° =N,

4. Limit theorems. An interesting dual relationship exists between the family
of sampling procedures S(L, n,) and F(K, n;) which will be useful. Namely, if
H(L; K, n;, N) is the distribution function of the total number L of tagged
elements appearing when the sampling procedure F(K, n;) is used, and if
G(K; L, n;, N) is the distribution function of the total number K of samples
drawn before sampling ceased when S(L, n;) is applied, then

GK;L,n;,N)=1— H(L — 1; K, n;, N).
We also have, then, that
hML;K,n;,N) = H(L;K,n;,N) — HL — 1; K, n;, N)
=GK;L,n;,,N) —GK;L+1,n,,N)
and
gK;L,n;,N) = GK;L,n;,N) — GK — 1;1,n;, N)
=HL —-1;K — 1;n;,N) — H(L — 1; K, n;, N).

Henceforth, these relationships will be designated as Relation A.

Throughout the following sections [n;] is to be any bounded sequence of posi-
tive integers. We now have

THEOREM 5. Let K(N) be any integer-valued function such that

. KN _
mey T
where
tz] = 2 ni.
f]
Then

. e (y\*
Ilvl_la. h(L; K, n;, N) = —L_'<§> )

where h(L; K, n; , N) is as in Relation A.
In order to prove this result, we need the following lemma:
LeMMa 3.

_ C({K] — L, N)

K

h(L; K, n;, N) =
H C(nn N)

gl

p(nf) L)y
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where p(n; , L) 7s a polynomial in n; such that

[ ]2L

Tt T OUED™,

when K = K(N).
This lemma may be proved directly from the fact that

UK]* = Donini, -+ niy, + O(K]D",

where the summation is taken over all sets (41, 72, -+, 4) such that ¢, =
fors # tand 7, = 1, 2, ---, K. This statement may be proved by induction
on L.
Theorem 5 now follows from Lemma 3 and the fact that
C({(KIN]), N) o i

hm KIN]
N H C(nc b N )
8=1
a result obtained using Stirling’s formula.
THEOREM 6. Let D(y) be the distribution function of *(K)/N = y where {(K) =
> K 1 n, when sampling proceeds according to S(L; n;). Then

Y
lim D(y) Ll

1
Nevo T 2eT(L) fo

The result follows by induction on L and use of Relation A applied to The-
orem 5.

We also have

CoroLLARY 3. If S(L, n;) is used, then the limiting distribution of t/\/N is
V/x® with 2L degrees of freedom.

Proov. This is a direct application of a theorem stated by Wilks ([7], p. 219).

Suppose the sampling procedure S(L, n;) was independently repeated m,
times, for L = 1,2, - -+ , O.1-1m; = m. By the preceding result it is clear that

_ e exp [—Z?il tii/(ZN)] ™ .2 NI-1 2
dF(th) - LI;II (QN) Imr, P(L)ml' zI=Il (th) d(tln.)

is approximately true when dealing with large N, where ¢,; is the number of
elements drawn when S(L, n;) was performed for the 7th time. Henceforth, we
shall assume that the preceding statement is exactly so; that is, all statements
made should now be interpreted as being only approximately true, the approxi-
mation being close when we are dealing with large N.

Since it is easy to see that D 5.y D ik 1 is sufficient for estimating N, we
may use a result stated by Kendall ([8], Vol. 2, p. 54) and the Blackwell the-
orem [6] to show that
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0 my

PIPIYF

M — La=1 ==l
2 Z LmL

L=1

is the m.v.u.e. (asymptotic) of N. It can easily be seen that

2
. N
oM = 00 )
Z Lmy,
L=1

and hence we may obtain standard errors for our estimates of N.

We shall now see that the best results will be obtained when > 5., m, = 1;
that is, when S(L, n;) is not repeated. More precisely:

TrEOREM 7. Consider all sequences of nonnegative integers my , mg, ms, -+ - ,
such that X5y Lmy is a fized integer. Suppose the sampling procedure S(L, n;) was
independently repeated my, times, for L = 1, 2, 3, --- . Then the variance of the
m.u.u.e. (asymptotic) of N is the same for each sequence. The expected number of
elements drawn is a minimum when 5.y my = 1.

Proor. Since oy = N/ Z°£=1 Lmy, the variance of M the m.v.u.e. (asymptotic)
of N is the same for each sequence. The expected number of elements drawn,
divided by A/N approaches

g; V7 myT(QL) T (L) 22

as N becomes large. The following inequality may be proved directly:

P(QZ LmL) o
=1 <>m I'(2L)

r ( f: LmL) g2zimy L=l ‘rm2™’

L=1

equality holding only in the trival case where D5, m;, = 1. Hence, the expected
number of elements drawn is a minimum when X 3, m, = 1. QE.D.

Hence, we see that the amount of information about N is greater when S(L, n;)
is performed once if the expected number of elements sampled is held constant.
Since M is also an efficient estimator of N, we have the result that (—1 4 M/N)

*V Z“,f:l Lm, approaches normality, as D Lm, becomes large in a sense more
rapidly when we confine ourselves to not repeating S(L, n;).

6. An exact distribution and comparisons with limit results. It is clear that
the distributions of ##/N and u’/N behave similarly for large populations. We
believe that when the =, is relatively small, then the use of ¢ gives us a good ap-
proximation to the limiting results. However, when n, is not small, then u + L
might be better. The following table shows that when the population size is
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only N = 365 (the archeologist’s problem), L = 1, and n, = 1, we obtain good
approximations using u, and still better approximations using u + 1 = ¢.

TABLE 1

Comparison of the exact distribution and the x* approzimation with 2 degrees of freedom
for N = 365

Probability | .01 .02 .05 .1 .2 .3 .5 7 .8 .9 .95 .98 .99

x? .02 .04 .10 .21 45 .71 1.39 2.41 3.22 4.61 5.99 7.82 9.21

t2/365 .02 .04 .10 .22 .46 .70 1.33 2.30 3.17 4.38 5.80 7.41 8.59

For example, Pr{x’ £ .71} = .3, Pr{#*/365 < .70} = .3, and Pr
{4*/365 = .62} = .3.

6. Approximate confidence intervals, fiducial limits, and tests of hypotheses.
We repeat that all statements made in the following sections should be inter-
preted as approximately so, in so far as we shall assume that */N has its limiting
x* distribution.

Since the distribution function of #/N is independent of N, we may set up
one- or two-sided confidence intervals for N. It is easy to see that the theory of
fiducial inference leads to the following fiducial distribution of N:

¢ N N

I'(L)2:N

and that limits obtained in this way for N are the same as those obtained by the
confidence interval approach.

To test the hypothesis at a level of significance of e that N = N, against the
alternative that N > N,, the region of rejection is & > ¢,No where ¢, is such that

f dF(x* | 2L) = e. A similar result holds for the alternative N < Nj.

dF(N | ) = (#/N)*

To test the hypothesis at a level of significance of ¢ that N = N, against the
alternative N £ N, , a uniformly most powerful unbiased test exists. The region

c3
of rejection is &£ < c:Noand £ > ¢;Nowhere ¢; and c; aresuch that f dF (x* |2L) =
e

1 — e and cye ™ = ¢fe. If we 'wish to test the hypothesis that two
2

populations were of the same size, Fisher’s Z distribution, Z = 14 log 222 ,
2 441

with parameters »; = 2L; and v, = 2L, , seems appropriate.

7. Comparisons. Let us first consider the nonsequential sampling procedure
F(1, n). It is easy to see that the maximum likelihood estimate of N in this case
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is the greatest integer less than or equal to n’/m = T, where m is the number
of marked elements appearing in the second sample. When n = O(\/N), we
have that the expected value of T/N approaches infinity. We have considered
the case where n = O (v/N) since the sequential sampling-tagging with which
it is compared has the property that the expected number of elements drawn is
O (\/N). However, if we are willing to draw sample of size KN, then, although
T is still not unbiased, we have that T/N converges in probability to one.

Suppose we consider the following sequential procedure. A sample of n, ele-
ments is drawn from a population P of N elements, tagged and replaced in P.
Then elements are drawn one at a time and then replaced until a total of L
tagged elements have been drawn. (This is similar to the sequential sampling-
tagging procedure we have been discussing except that n, = n3 = -+ = 1 and
we do not tag elements appearing after the first sample.) This scheme was studied
by Haldane ([9], p. 222) for the purpose of estimating p = n,/N, while we are
interested in the estimation of n;/p. We can without much difficulty show that
if this sequential non-retagging method is used, then

E{my/L} = N,

and o’y = (N* — mN)/L, where y is the number of elements drawn, after
the n; of the first sample, before sampling ceased. If we consider n, as fixed, then
the total number of elements drawn is O(), whereas the variance is no better
than that obtained in the sequential sampling-tagging case for only O(\/N)
elements. Now let us suppose that n; = v/KN. Then E(y) = L+/N/K and the
expected value of the total number of elements drawn is +/NK(1 + L/K).
Since K # 0, it is easy to see that for a given L, the minimum value of ~/NK
(1 + L/K) is obtained when K = L, and so we have 2/NL. When N is large,
we have seen in the sequential sampling-tagging procedure that the expected
value of the total number of elements drawn is about /N E(+/x?), where x*
has 2L degrees of freedom. Since E(x") = 2L, and since VE(x?) = E(v/x?),
we have that 2/NL = v2NL = E(v/x?) v/N. Hence, we have shown in this
case that, for a given variance, the expected value of the total number of ele-
ments drawn before cessation is smallest when the sequential sampling-tagging
procedure is used for large populations. Let us now consider the case where
n; = KN, K < 1. Then for any sequential nonretagging procedure, there exists
a sequential sampling-tagging method which obtains estimators whose variance
is smaller, and also has the property that the expected value of the total number
of elements necessarily drawn in the process is smaller than in the given sequen-
tial nonretagging method used for large populations.

8. A numerical illustration. Seven samples of 100 (n; = n, = ... = ng = ny)
followed by samples of one (ng = ng = --- = 1) were drawn from a population
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of N = 10,000 random numbers [10]. Sampling ceased when a total of L = 25
elements had reappeared. On the basis of the sample results, we then estimated .
The standard deviation of our estimate is about ¢ = 10,000/5 = 2,000. The
results of this sampling experiment are summarized in Table 2 which Mr. Syl-
vanus Tyler of Argonne National Laboratory was kind enough to prepare. We
find that estimate of N is /50 = (756)/50 = 11,704.5. Also an estimate of o
is 11,704.5/5 = 2,340.9. The case where N is known is of little practical use but
serves to illustrate the methods presented herein.

TABLE 2

Reappearance of tagged elements in samples from a population of 10,000
random numbers

Sample Elements in Sample T?fgpegpﬁizrt?zﬁts Re}il;glee:rtisng
1 100 0 0
2 100 100 4
3 100 196 4
4 100 292 1
5 100 391 3
6 100 488 2
7 100 586 7
89, ...,72 65 679 4
Total............. 765 740 25
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