THE POWER OF RANK TESTS?

By E. L. LEHMANN
Stanford University and University of California, Berkeley

1. Summary. Simple nonparametric classes of alternatives are defined for
various nonparametric hypotheses. The power of a number of such tests against
these altérnatives is obtained and illustrated with some numerical results. Opti-
mum rank tests against certain types of alternatives are derived, and optimum
properties of Wilcoxon’s one- and two-sample tests and of the rank correlation
test for independence are proved.

2. Introduction. The most pressing need in the theory and practice of non-
parametric tests at this time seems to be for results concerning the power of such
tests, particularly those based on ranks. This would provide a basis for com-
paring the many different tests proposed as well as for determining the sample
sizes necessary to distinguish significant departures from a hypothesis with a
reasonable degree of certainty.

The chief problem one is faced with when investigating the power of a non-
parametric test is the choice of suitable alternatives. Even in the simplest prob-
lems the variety of alternatives is so great that it is clearly impossible to consider
all of them. In the past, investigators have concentrated on alternatives postulat-
ing normal distributions for the random variables in question. These alternatives,
which unfortunately are rather difficult to handle mathematically, must, of
course, be studied if one wishes to find out how nonparametric methods compare
with procedures based on normal theory. On the other hand, when comparing
different rank tests, one is no longer tied to normal alternatives, but it would on
the contrary seem rather desirable to make the comparisons in terms of non-
parametric classes of alternatives.

As a specific example, consider the one-sided two-sample problem, and suppose
that on the basis of samples X;, --- , X ; Y1, ---, Y, from cumulative distri-
bution functions F and @ respectively we wish to test the hypothesis H: F = G
against the alternatives that G(z) < F(z) for all z. If among these alternatives
we look for some simple subclasses, parametric theory suggests

2.1 G(x) = F(x — a) for some a > 0.

But under such alternatives, the distribution of the ranks will depend not only on’

a, but also on F, nor, in general, would a be a suitable measure of the difference
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24 E. L. LEHMANN

of F and @G. The situation is similar to the corresponding one for normai distri-
butions with different means and,.say, common but unknown variance.

We shall in the present paper discuss mathematically “natural’” nonparametric
alternatives against which the distribution of the ranks is constant. Once these
have been defined, it is relatively simple, on the basis of a theorem of Hoeffding,
to obtain the power of any rank test and also to derive tests possessing various
optimum properties.

The classes of alternatives with which we shall be dealing involve arbitrary
functions for which one must make a definite choice in order to get specific
power-results. This choice is here made solely on the grounds of simplicity for
the resulting calculations. We do not, of course, claim that these are the al-
ternatives that actually prevail when the hypothesis is not true. Rather, it seems
that where nonparametric methods are appropriate, one usually does not have
very precise knowledge of the alternatives. What is then required are alternatives
representative of the principal types of deviation from the hypothesis, in terms
of which one can study, at least in outline, the ability of various tests to detect
such deviations. Such an approach is here presented, and the computations are
carried through for a few examples. However, in order to get a valid comparison
of such tests as the Wald-Wolfowitz run test and the Smirnov two-sample test,
for example, much more systematic computation is required. Such computations
seem entirely feasible and would seem to be a worthwhile undertaking.

I should like to express my gratitude to Miss E. L. Scott for her help in setting
up and supervising the computations for Table 1 and to Mrs. M. Vasilewskis
who carried out these computations, as well as to Mr. H. Wagner and Mr. J.
Rosenbaum on whose computations Fig. 2 and 3 are based.

3. The hypothesis of randomness. While we shall be concerned mainly with
the two-sample problem, it is convenient to present some preliminary considera-
tions in the more general notation of the hypothesis of randomness. We shall
here make the assumption, to hold throughout the paper, that all distribution
functions that we consider are to be continuous.

Let f; (¢ = 1, ---, N) be continuous, nondecreasing functions defined over
the interval [0, 1].such that f:(0) = 0, f:(1) = 1. Let Zi, Z,, ---, Zy be inde-
pendent random variables distributed according to cumulative distribution
functions Fy, ---, Fy. We shall denote by F(fi, ---, fv) the family of all
(Fy,---, Fy) such that F; = f;(F) where F runs through all continuous cdf’s.
The classes F(fi, - - - , fv) for different choices of the functions f;, - - - , fv then
define a partition of the family of all N-tuples (Fy, ---, Fx) of the kind de-
scribed. It should perhaps be pointed out that different N-tuples f; do not
necessarily generate different families of F’s. If f; is strictly increasing on [0, 1],
a natural normalization would be to take fi(x) = 2,0 <z < 1.If (Fy, -+, Fu)
belongs to the class F(f1, - -+, fx) we shall write

(3.1) Fi:Fo: --- :Fy =f1:f2: X :f)v.
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We shall now show that the distribution of the ranks of the Z’s is constant
within each family F(fi, -+, fx)-

LemMa 3.1. If F s a continuous cdf and if the cdf of Z s given by P(Z <2 =
f(F(2)) where f is nondecreasing on [0, 1] with f(0) = 0, f(1) = 1, then the cdf
of F(Z) isf.

Proor. When f(u) = u, 0 < u = 1 this result is well known and implies in
our case that f(F(Z)) is uniformly distributed over [0, 1]. Therefore

P(f(F(Z)) < f(w) = P(F(Z) £ u) = P((F(2)) = f(w))

and the first and third member equal f(u).
Let us denote the ranks of the N variables Z;, ---, Zy by Ty, -+, Tw.
Then we have

LemMma 3.2. If Zy, -+, Zx are independent, the distribution of Ty, -+, Tw
is constant within each family F(fi, --- , fx).

Proor. Clearly
P(F(Zil) < < F(Zizv)) = P(Tin =1,-, Ty = N)

< P(F(Zy) £ -+ £ F(Zy)).

But the first and third members of this inequality are independent of F and
equal since by Lemma 3.1 the distribution of the F (Z,) is independent of F and
continuous.

As an immediate consequence of this lemma we have

TueorEM 3.1. Given any functions f1, - -+ , fx and any rank test of the hypoth-
esis H:(Fy, -+, Fx) €5(f1, -+, fx), the power of this test depends only on
FI:---:FN.That'is,ifFlz-- FN=F1 oo FNsothat(Fl,-- FN) and
(Fi, ---, Fy) belong to the same class (fi, - - - , fn) the test has the same power
against these two allernatives. Furthermore, given any class of alternatives
K:(Fy, -, Fx)eS(f1, -+, fx) there exists a uniformly most powerful rank
test for testing H against K.

Proor. The first statement is just a specialization of Lemma 3.2. Since the
distribution of the ranks is simple both under H and K, the second statement
as well as a method of constructing the most powerful rank test follow from the
Neyman-Pearson fundamental Lemma.

In order to apply this theorem we require the distribution of (T, - -+, Tw)
for the (f1, - - - , fx) of our choice. The relevant result was obtained by Hoeffding
([1], p. 88). Instead of stating it here we shall in the next section give its speciali-
zation for the two-sample problem.

4. The two-sample problem. Let X;, -+, Xnand Y, -- -, Y, be independ-
ently distributed with cdf’s F and G respectively. We wish to test the hypothesis
H:F = G. The classes §(fi, -+, f~), in the present case, involve only two
functions f and g and may be written as (f, g). To simply our notation, we shall
assume that f is strictly increasing. Then F(f, g) may be represented by a single
function g and is given by $(g) = {(F, g(F))} where the domain of F is as before
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the totality of continuous cdf’s, and where g is a continuous nondecreasing
function with ¢(0) = 0, g(1) = 1.

Let us denote the ordered X’s and Y’s by X® < X® < ... < X" and
Y® < ... < Y™ and the ranks of the X’s and Y’s in the combined sample
byRi < --- < Rpand §; < --- < S, respectively. The complete set of the
ranks is, of course, determined by the ranks of the Y’s alone. We shall assume
here that the function g is differentiable on [0, 1] with derivative ¢’. Specializing
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a theorem of Hoeffding ([1], p. 88) to the present case we find that when F and
G = g(F) are the cdf’s of the X’s and Y’s, then

_r
m<+n
m

PSi=s, 8 =s) = ( >E,[g'<F(Y<">>>- g (B

where the expectation is computed under the assumption that F is the true
distribution of both the X’s and Y’s. Since in this case F(Y) is uniformly dis-
tributed over [0, 1], we get

1
= = = — UePY. ... .g(U%
(A1) P(Si =81, -+, 8 = s, m+ a Zlgut) g'(U™)]
m
where U, ... U“ are the si* to s™ order statistics in a sample of m 4+ =

variables distributed uniformly over [0, 1].
Since the probability distribution of the ranks can be expressed so simply in
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terms of ¢ it is seen that the difficulty in obtaining power results for a specific
alternative is directly related to the complexity of the function g involved. This
explains why the investigation for normal alternatives has proved so difficult.
When F and G are two distinct normal cdf’s, the function ¢ = G(F™) is not
particularly easy to handle.

Consider now the one-sided alternatives G(x) < F(x). To this corresponds
a function g such that g(x) < z, 0 £ z < 1. The simplest choice in view of
(4.1) seems to be g(z) = z*; k > 1. The associated problem is that of testing
H:G = F against the alternatives K:G = F*. In addition to mathematical
simplicity, this choice has the advantage of admitting a simple interpretation of
the alternatives. Suppose that k is an integer. Then F* is the distribution of the
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maximum of &k independent variables having distribution F. Thus under the
alternative, the X’s have distribution F while the distribution of the Y’s is the
same as that of the maximum of k X’s.

In order to give an idea of how much larger the Y’s are than the X’s, note that

G =F PX<Y)= f FdG = k/k + 1. In Fig. 1, we have assumed that
the distribution of X is given by the densities

filz) = *‘\/13—; e_’m; filz) = 7, 0=z filz) =1, 0 é z

IA

1

respectively and show the density of f; of ¥ when G = F* for k = 2, 3 and 6.
In terms of the present frame of reference the distance of the density f; from f; is
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the same in all three cases, since in each of them f; is the density of the maximum
of k observations from f; and since further in all three cases, every rank test has
the same probability of detecting the hypothesis to be false when fiis the density
of the X’s and f that of the Y’s.

It is clear that a similar interpretation of the alternatives F* can be given when
k instead of being an integer is any rational number. Altogether, we may think
of the class of alternatives @ = F*, as'a one parameter family of nonparametric
classes of alternatives. The distribution of the ranks under these alternatives is
now easily determined from (4.1).
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Forif weput N = m + n,8 = 0,8,010 = N + 1, 4 = 0, and u,s = 1, the
joint density p(ui, - -+ , ua) of U®Y, --- | U® is given by

N! i 8ty
(42) Py H (u,-+1 -_— u,-) it1mei=l
H (8i+1 - 8 — 1)! =0
=
over theregion0 = uy < u; < --+ < U,y = 1. If here we make a transformation

to new variables V1, - -+ | V, defined by

(4.3) Ui = UDig1 *** Uy (1, =1, ’n)
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and put v = 0, v,41 = 1, it is seen that the joint density of the V’sis

N! L g
- Hv;z 1(1 - vj)‘:+l 8j—1
II Gia — i = 117

=0

(4.4)

over the region 0 < v; £ 1,5 = 1, ---, n so that the V’s are independently

distributed according to Beta-distributions, that is, as are single order statistics
from a uniform distribution.

TABLE 1
m=mn=+4 m=n=206
Test

B(F?) . B(F3) B(F?) B(F?)

T 23 33 29 45

T, 31 47 38 .59

Ts 32 49 41 .64

T, 14 20 17 29

Ts 15 22 21 36

Ts .19 32 25 44
Since U®Y- -.. .U“” = V;-V;- --- -V, we have when G = F* and hence

g'(w) = k'™,
_ _ ok ) (sm)\ k=1
P(Si =81, ,8 =s8) = o E[(U“Y. ... .y
m

B s ke T(s; 4 jk — j)
. = o E(V¥) = ——— — W

(4.5) m+n ,I=Il (Vi) m + n) H T(s)

m m
P(3j+1)

T(s + 3k —9)

In particular, when k = 2 so that G = F?,
P(S; = 8, -+~ Sn=8n)=—"—2:—
)

(4.6) -

X sise+1) --- (sa+n—1)
m+n+1)m+n+2)-- (m+ 2n)°

Using (4.6) (or more generally (4.5) or (4.1)) one can now compute the power
of various rank tests against the alternatives in question. One must list the
sets (sy, --+, S,) making up the critical region and then sum the right-hand
side of (4.6) over these values of the ranks. In this manner Table 1 was com-
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puted, which gives the power of six different rank tests T3 — T against the
alternatives G = F* and G = F® at level of significance & = .1. Since the com-
putation of the exact power rapidly increases in difficulty with the sample size,
these computations have been carried through only for the cases m = n = 4
and m = n = 6.

The above tests are defined as follows.

Ti: One-sided median test. Rejects H when too many Y’s exceed the median
of the combined sample. See Mood ([2], p. 394) and Westenberg [18].

T,: One-sided Wilcoxon test [3], [4]. Rejects when S; + --- +8S, is too large,
or equivalently when there are too many pairs X;, Y; ¢t = 1, ---, m;
j=1-- ,n)withX; <Y;.

T;: This is the most powerful rank test for testing G = F against G = F°
(see Section 6). It rejects when S;(S; + 1): +-- (8, + n — 1) is too
large.

Ts: Wald-Wolfowitz run test [5]. Rejects when the total number of runs of
X’s and Y’s is too small.

Ts: Two-sided median test ([2], p. 394). Rejects when either too many X’s or
Y’s exceed the median of the combined sample.

Ts: Two-sided Wilcoxon test [3], [4]. Rejects when

m-+n-+1
Sl+°"+Sn-< 2 >'

is too large.
Although it is not shown in Table 1, we mention for later reference also
T+: Smirnov two-sample test [6]. Rejects when supt,
| Fxgpeuox@) — Gy, oov, (0) |

is too large where Fyx,,... x, (1) and Gy,.... v, (t) are the sample cumulative
distribution functions of the X’§ and Y’s respectively.

Of course, not all of these tests are directly comparable. While the first three
are aimed only at alternatives under which the Y’s tend to be larger than the
X’s, the fifth and sixth test are designed against two-sided alternatives, and the
fourth and seventh against arbitrary deviations from the hypothesis.

6. Large sample power. For alternatives of the type G = F* it also becomes a
relatively easy task to compute the approximate power of certain rank tests
using large sample theory. Some results obtained in this way are shown in Fig.
2 and 3.

Fig. 2 gives the power of various tests against the alternative g(F) = F* for
different sample sizes n. The lowest of the four curves (labeled 8,) corresponds to
the run test (the subscripts refer to the numbering of the tests in the previous
section) and is based on theory not yet completely verified. The next curve,
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Bz, gives a lower bound to the power of the Smirnov test, while the two upper
curves show the power of the two-sided and one-sided Wilcoxon test. In Fig.
3 are shown the corresponding curves for g(F) = F® except that the run test hac
been omitted.
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The remainder of this section is devoted to a discussion of the formula,e from
which Fig. 2 and 3 were computed.

For the Wilcoxon statistic U which counts the number of pairs X;, ¥, with
X; < Y, it was proved by Mann and Whitney [4] that for large samples
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- 5(2)
mn mn

* ()

is approximately normally distributed when F = G, and the proof of the cor-
responding fact when F = G was given in [7]. Mann and Whitney also gave
the first two moments of U as

‘ E(ﬂ%) = [Fae

(5.1) mm%%9=[ﬁi%il+on—na~m+wn—no~@

~Nm+n -]

where

e1=%—fF2dG, 62=%—f(1 — G)* dF.

(Note that the notation used here differs from that in [4].)
If G = F* we have
_k
E+1°

and hence on substituting in (5.1)

U k
E(%)"lwrl

o[ U k m—1, k(n —1)
mne <n7ﬁ)‘ <k+1>2[k+2 MRS +1]'

The theory of the run test was developed by Wald and Wolfowitz
[5] and certain extensions were given in [8]. If W denotes the total number
of runs of X’s and Y’s and if m/n = v it was shown in [5] that when F =
G, W/m — E(W/m))/a(W/m) is asymptotically normally distributed. It was
also proved that when G = ¢(F) where the derivative ¢’ of ¢ is continuous and
positive on 0 < = < 1, then

W 4C) '
(5.3) E(r_n_>_)2.£ mdx asm — o,

szdG=—k— szdF=

deG: k+2’

_1
2% + 1

(5.4)
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In [8] Wolfowitz stated that the distribution of W is approximately normal
even when g(x) = x, and he derived the asymptotic formula

lz_W_:> t_ g g+ ¢")
7 (\/m j:(7+g’)3dx+ (y + ¢)* dz

1 glz =2 s 1 g/ 2

- nede | — f T ]
l:fo (v + ¢ xJ 7[0(7+g)2dx

When G = F*, then g(z) = 2* and ¢’(z) = k2", and the integrals on the

righthand side of (5.3) and (5.4) can be evaluated without much difficulty.

The power of the run test against g(F) = F* shown in Fig. 2 was computed in
this manner. Since then it has been pointed out to me by R. Savage that when

the limit result for
- )/
m m m

E(W/m)

(5.4)

we replace

by
1
2 [ ¢@/tr + ¢@) dn,
0
the error is of the order

vm [E(W/m) -2 fol g @/(y + ¢' @) dx}l,

as is seen from (5.4). Thus (5.3) is not enough to guarantee the validity of this
substitution. However, the numerical results obtained seemed sufficiently inter-
esting to leave them in, in the hope that a proof of their validity will soon be
forthcoming.

The large sample distribution of the Smirnov statistic has not yet been in-
vestigated when F = (. However, it was pointed out by Massey [9] that a lower
bound to the power can be obtained simply by the inequality

P(Sup I Fxl,...yxm(t) = Gyly...,y"(t) l Z C)
Z P(| Fxypooxp(t) = Gyper,(l0) | 2 C

where t, is any particular value of t. If F(z) = 2 (0 £ z £ 1), G(z) = F'(z) = *
and we take for # the point of maximum difference between F and G, we get
to = 1/k — 1v/k. Now Fx,,....x,(t) and Gy,,....v,(l) are the proportion of
successes in m and 7 binomial trials with probability of success equal to F(f) = t,
and G(t) = (¢ respectively. Thus for moderately large sample sizes

Fxi...xn(lo) — Fy,,... v, (k)

(5.5)
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is approximately normally distributed with mean & — ¢ and variance
(1 — t)/m) + (L1 — t)/n).
The constant C of (5.5) can be obtained from [10] or [11].

6. Optimum rank tests for the two-sample problem. We next consider the
problem of determining the optimum rank test of H:G = F against K:G = g(F).

Under the hypothesis all (m ;: n) possible combinations of s, ---', s, are

equally likely while their probabilities under K are given by (4.1). Thus the
problem, in terms of ranks, reduces to that of testing a simple hypothesis against
a simple alternative, and its solution is given by the fundamental lemma of
Neyman and Pearson. The most powerful test rejects when the ratios of the
probabilities is too large. Since the denominator of this ratio is constant (in-
dependent of s, , - - - , 8,), this is equivalent to rejecting when (4.1) is too large.

If we take, for example, g(F) = F* the most powerful rank test rejects when

sise+ 1)+~ (sn+n—1)>C.

The power of this test is shown against @ = F* and G = F® in Table 1.

Since usually one does not have any precise alternatives in mind, it is perhaps
more interesting to turn the problem around and to investigate what optimum
properties (if any) are possessed by some of the standard rank tests. This gives
an indication of the type of deviation from the hypothesis that the test under
consideration is particularly suited to detect and therefore of the circumstances
in which the application of the test is appropriate. As one such example, we shall
discuss here the Wilcoxon test.

Consider to this end the one-parameter family of nonparametric alternatives
given by

(6.1) 9o(F) = qF + pF’, 0=p=1 p+gqg=1

If B(p) denotes the power of a test against g,(F) we shall show that the one-sided
Wilcoxon test among all rank test maximizes 8'(0), the slope of the power
function at the hypothetical point. It is thus “locally most powerful”’ just against
the type of alternative we have been considering.

To prove this result we must consider 8(p). Since d/du (g,(u)) = ¢ + 2pu
it follows from (4.1) that

1
P(Si = sy, ,8 =s8,|p) = (ﬂ—n}E[(q +2pUY)- --- .« (g + 2pU)]
m

and hence that
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i - . — — .___—1 - (s4)
dpP(Sl =81, ", 8. = 8. |p) = (m+n>E[§ QU*? — 1)]
p=0 m
1 2 n
=(m+n [m+n+1,~z_;s‘—n]'
m
Therefore
1 2 d
(6.2) 80 = X7 [m+n+1§;sl—n],
m
where the summation extends over the sets (s;, - -+, s,) that form the critical

region. It follows as before from the fundamental lemma of Neyman and Pearson
that we maximize 8'(0) at a fixed level of significance by rejecting H when the
right-hand side of (6.2), and hence D %, s,, is too large. This is the desired
result.

The above property of the Wilcoxon two-sample test can be generalized in
various directions, which we shall sketch only briefly. First, an analogous property
holds for any test whose region of rejection is of the form

(6.3) h(s1) + h(s2) + -+ +h(s.) = C.

In any such case one can find a function A* for which the test given by (6.3)
maximizes the slope of the power function 3(p) against the alternatives g,(F) =
gF + ph*(F) at p = 0. A particular example of (6.3) is Mood’s median test
T:, which rejects when the number of s; exceeding a given constant is too large.
However, in most cases, and this seems to include the one under consideration,
the function A* is too complicated to be very enlightening and to warrant the
tedious computations necessary to obtain it. The existence of h* follows from
the fact that the s; can only take on a finite number of values so that without
loss of generality, the function k in (6.3) may be taken to be a polynomial.
Furthermore, as in the case of the Wilcoxon statistic the test maximizing 8'(0)
against the alternatives ¢F + ph*(F) is given by the rejection region

E[h*/(U(n)) + . + h*/(U(s,,))] > C.

To complete the proof it is enough to show that there exists a polynomial
h* and constants @ > 0, b such that 2*(0) = 0, A*(1) = 1, h* (u) = 0 for 0
< u £ 1 and ER¥(UY)] = alh(s) + b]. Now from the fact (see (4.5)) that

ss+1) - (s+k—1)
(m+n+1)--- m+n+k)

it is seen that there exists a polynomial P for which E[P'(U®)] = h(s). Putting
h*(s) = a[P(s) + bs] + ¢ we need to show only that given any polynomial P

E(U™)] =
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there exist constants a > 0, b, ¢ such that ¢ P(0) + ¢ = 0, a[P(1) + b] +c =1
and a[P’(s) + b] = 0 for 0 < s =< 1, and this is easily verified.

Another extension of the above result concerns a problem different from but
closely related to the two-sample problem. (In this connection see Hemelrijk
[19]). Let Z1, --- , Zx be identically and independently distributed with edf M.
The hypothesis to be tested is that M is symmetric about the origin, that is,
that for all 2, M(z) + M(—z) = 1. If we assume M to be continuous, put 1 —
M(0) = p and denote by F and G the conditional distributions of Z given that
Z > 0 and of —Z given that Z < 0, the hypothesis is equivalent to the two
statements p = %, F = (. Let m and n be the number of positive and negative
Z’s respectively, and denote by Xi, -+, X, and Yy, ---, Y, the positive
Z’s and the absolute values of the negative Z’s respectively, in their original
order of subscripts. Consider now the probability of any particular set of ranks
of the Y’s under some alternative. Given m and =, this is independent of p and
is given by (4.1) when G = ¢(F). In addition, n is a binomial variable with
probability p of success. Thus we get

P(The number of Z’s > 0isnand S; = s, -+, S, = 8a)

(6'4) n —n (] 3
=p"(1 — p)" "Bl (U*Y): -+ g/ (U]

If in particular, one considers alternatives with p = 1, the right-hand side of

(6.4) becomes 27" E[g/(U®Y). ... -¢’(U")], which formally differs from (4.1)

only by a multiplicative constant. Thus any optimum test of the two-sample
problem derived on the basis of (4.1) gives rise to a dual one for the hypothesis
of symmetry. As an example, the Wilcoxon two-sample test which rejects when
st + - -+ + s, > C, under translation in the above manner becomes a test of the
hypothesis of symmetry also proposed by Wilcoxon [3] and recently shown by
Tukey [12] to be equivalent to a test proposed independently by Walsh [13].
This test is now seen to maximize §'(0) against the alternatives according to
which M(0) = %, the conditional distribution of Z given Z > 0 is F and that of
—Z given Z > 0is qF + pF”.

As another application of this approach, let us once more consider the two-
sample problem, but this time with a two-sided class of alternatives. For sim-
plicity, we take m = n, and we assume that either the X’s are distributed ac-
cording to F and the Y’s according to ¢F + pF” or vice versa. Let 8(p) denote
the power of a rank test against the first of these alternatives and §*(p) that
against the second. We shall then maximize the average power [8(p) + B*(p)]
at p = 0. Since it turns out that 8’(0) 4+ 8*(0) = 0 this is equivalent to maxi-
mizing 8”(0) + 6*"(0).

From (4.1) we see that the sum of the probabilities of By = r1, -+, R, = 75,
Sy = s, -, 8Ss = s, under the two alternatives is

E[(q + 2pV(sz)) e (q + 2pV(s,.))] + E’[(q + 2pU(r1)) . (q + 2pU§r,,))]
=2 4 pE [i} (ZU(“) -1) + i (2U(Ti) - 1]
+ 7 B[L @V - DV - 1) + 22 U = DU — D] + o).

<7 1<J



RANK TESTS 37
Now

- (s3) V] Z r; + Z 8:
EUMJ)+EW ”“3?:?“"

so that the coefficient of p is zero. The coefficient of p° is, except for a constant,
given by

4 Z [E(V(as)V(Sf)) + E(U(r.')U(ri))] -9 ZE[V(a;) + V(si) + U(r;) + U(r,-)]

i<j i<j
8i(sj + 1) + ri(r; + 1) i+ s +ritr;
—4 —4
;:' @n + )(2n + 2) i§i 2n + 1)

Using the fact that ) .5 = X, (n — 4)s; and that 2 (r; + s;) as well as
2 [} + s%) are constants, the coefficient of p” is, except for a constant,

2 2 2 2 2
Cn+ D2n ¥ 2 (X s)* + ) + 20 (s = )" + 2 (e — i)'

Thus we maximize the average power at p = 0 by maximizing (6.5) or equiv-
alently

(6.5)

[Z o — n(2n2+ 1)]2 n [Z e — n(2n2+ 1)]2

+ 2 (si— )+ 2 (i — D)

Rather surprisingly this is not the two-sided Wilcoxon test which is given just
by the first two terms of (6.6).

This result can be given a slightly different form. Let us write the alternative
gF + pF? in the form

(6.6)

1 2
(6.7) gs(F) = ) (F + 0F)
where we shall be interested only in values of 8 close to zero, and where we may
then consider also negative values of 6. If 3(8) denotes the power of some rank
test against § we may in analogy to the type A tests of Neyman and Pearson
[14] maximize 8”(0) subject to 8(0) = «, 8/(0) = 0. This will clearly again lead
to (6.6).

Such a parametric approach can be carried further. Consider, for example,
samples from %k populations Fy, - - , F; and the hypothesis H:F; = --- = F}.
If we then consider alternatives of the form F; = (1/1 + 6,)(F + 6.F®) with
> 6; = 0, we can, for example, maximize the average power over the sphere
Y. 6; = & for small 6. This is analogous to a formulation given by Wald [15]
for the normal case, and leads to an extension of (6.6).

7. The hypothesis of independence. To illustrate the general approach of this
paper with another example, consider a sample (X;, Yiy), ---, (X,, Y,) from
a bivariate distribution. The hypothesis to be tested is that X and Y are in-



38 E. L. LEHMANN

dependent. Nonparametric alternatives to this will be defined by means of a
function h of two variables such that k is a continuous cdf over the unit square
0 < 2z,9 =<1 (so that 2(0, 0) = 0, h(1, 1) = 1). A nonparametric class 3¢(h)
of bivariate distributions is then formed by the totality of distributions h(F, G)
where F, G are arbitrary continuous univariate cdf’s. Suppose now that the
X’s are ordered and that in this ordering the rank of X;is R; ( = 1, - -+, n).
Similarly, we shall denote by S; the rank of Y; among the Y’s. We then have,
analogously to the corresponding result in Section 3,

THEOREM 7.1. For the distributions of a class 3¢(h) the distribution of the R’s
and S’s is constant, that s, independent of F and G.

This follows from

Lemma 7.1. If h, F and G are continuous and if P(X = z, Y £ y) =
h(F(z), G(y)) then
(7.1) P(F(X) £ u,G(Y) < v) = h(u, v).

Proor. Let z, y be such that F(x) = u, G(y) = v. Then

PX <z, Y<y) sPFX)=uGY)<sv) SPX =s2Y=y).
But
PX <z, Y<y)=PX =Y =y) = kF(2),3¥) = h(u,v).

Again we can write down the distribution of the R’s and S’s using Hoeffding’s
theorem. In fact if h'(u, v) = (8°/0udv)h(u, v) we have

P(R] =7y, - ,Rn= rn;Sl= S1, v ,S" =sﬂ)
= E[h/(U(fl)’ V(ll))_ . .hI(U("n)’ V(!n))]

where Uy, ---, U, ; V1, --+, V, are two independent samples from a uniform
distribution on [0, 1] and U“?, V*? are the associated order statistics. It should
be noted that in (7.2) it is not assumed that either the r; or the s; are arranged in
natural order. Alternatively we may take r; = ¢ and define s; as the rank of the
Y that is associated with the 7th smallest X. In this notation only the S; remain
random and instead of (7.2) we get

(7.2)

(7,3) P(,S1 =8, - ’Sn = S,,) — %E[hl(b?(l)’ V(")))' . 'h'(U(n), V(a,.))]‘

Perhaps the simplest choice for h would seem to be
(7.4) h(u,v) = u + v; h(u, v) = L’ + u'v).

This corresponds to the family of cdf’s H(z, y) = i[F(z)G*(y) + F*(z)G(y)] and
can be interpreted similarly to the alternatives discussed in previous sections.
The observations X, Y are drawn with probability % each from two bivariate
populations with independent components. According to one of these X is an
observation from F while Y is the larger of two observations from G; according
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to the other the situation is just reversed. A general family of alternatives could
be obtained in this way, given by

l
H(z,y) = le.-F"‘(x)Gb"(y), piz0, D pi=1

The distribution of the ranks under such alternatives can be written down on the
basis of (4.5) and (7.3). However, even in the simplest cases such as (7.4) the
resulting expressions are quite complex except for very small values of n.

It seems of interest that one of the best known tests for independence, that
based on the rank correlation coefficient, possesses an optimum property similar
to the ones derived in Section 6 for the Wilcoxon and related tests. For let

(7.4) hy(u, v) = quv + pus®.
Using (7.2) we see that the probability of R; = r;, S; = s; (4,7 = 1, -+, n) is
E[(q —+ 4pU(r1)V(81)). e (q + 4pU(rn)V(sﬂ))].

Differentiating this with respect to p and setting p = 0 we get

t=1 i=1

= _ (r9) y7(sd) — 4 3 .Q.
E[Z( 1+ 4U"V ):I— n+(————n+1)22r,s,.

Thus the test that maximizes the slope of the power function against the al-
ternatives (7.4) at p = 0 rejects when > r:s; is too large, and hence when the
rank correlation coefficient is too large. More generally, if ho(u, ) = quv +
pg:1(u)gs(v), the test that maximizes the slope of the power function rejects when
g1(U")g(V?) is too large. In this manner we obtain a generalization of the
result connected with (6.3).

8. Invariance. The definitions of nonparametric classes of alternatives given
in the earlier sections for various problems may appear somewhat arbitrary.
The only apparent justification is their success in permitting the derivation of
results concerning the power of nonparametric tests. Also, it is not clear at this
point to what problems, in addition to those discussed here, the method is
applicable and what would be the appropriate classes of alternatives for such
additional problems. We shall now show that the notion of invariance provides
an approach to a general class of problems, which in the special cases treated
in Sections 4 and 7, yields the definitions given there.

The general concept of invariance due to Hunt and Stein, and presented in
[16] is not sufficiently broad for our purpose, so that we shall first indicate a slight
extension of this notion. As usual, we are concerned with a sample space & on
which an additive class @ has been defined as the class of measurable sets. Let
F be a class of possible distributions F of a random variable X over @. We are
also given measurable transformations r of % onto itself (see [17] Ch. VIII).
These transformations are such that when X is distributed according to F ¢,
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the distribution 7F of 7X is again in §. The definition of 7F may be expressed by
the transformation equation

(8.1) Pr(rX e A) = Pir(X € A) for all 4 e@.

Since we are not assuming that the transformations r or 7 are 1:1, they do
not necessarily have inverses and cannot therefore be assumed to form a group.
Instead, we shall assume that the classes $ and § of transformations r and 7
include the identity transformation and are closed under multiplication so that
71, T2 € 8 — 7179 € 8; that is, $ and $ are semi-groups with an identity.

We shall say that a function ¢ defined on X is invariant with respect to 8
if
(8.2) o(rz) = o(x) forall €8, x € X.

Furthermore, we shall define as mazimal tnvariant, the partition of X generated
by the relation R:

(8.3) 2R,

when there exists 7 € § such that z; = 7z;, that is, the partition generated by
the smallest equivalence relation ~ closed with respect to (8.3). We note that
the existence of 71, 72 such that

(84) T1X1 = ToX2

implies x; ~ z, . For then z;Rm21 , z.R 72, and hence 2, ~ 1121 = 722 ~ 2.
Lemma 8.1. A function ¢ is invariant if and only if

(8.5) 1 ~ 1z implies (1) = o(x2).

Proovr. Suppose that (8.5) holds and that «' = 7x. Then 2’ ~ z and hence
o(x') = ¢(x) so that ¢ is invariant. Conversely, suppose that ¢ is invariant and
consider the equivalence relation according to which two points xz;, z» are
equivalent if and only if ¢(x;) = ¢(x). This equivalence relation is closed with
respect to B and hence contains the relation ~ so that ¢(z;) = ¢(x.) implies
Xy ~ X2

TueoreM 8.1. If ¢ is invariant with respect to 8 then the distribution of ¢(X) is
constant over the equivalence classes mod $ that is, if F ~ F’ mod $ then

Pre(X) eA) = Pr(p(X) € A).

Proor. Consider the equivalence in the space of distributions according to
which two distributions F and F’ are equivalent if and only if

Prle(X) e A) = Pr(p(X) € A) for all 4 ¢a@.

We need only show that this relation is closed with respect to the relation FRF’
if there exists 7 such that F/ = 7F. But let F/ = 7F. Then

Py(e(X) e A) = Pr(p(rX) e A) = Pir(e(X) e A) = Pr(p(X) e 4),
so that F'RF implies F/ ~ F as was to be proved.
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Consider now a nonparametric problem of the kind studied in the previous
sections. For a suitable class 8 of transformations, the invariant tests (that is,
those given by a critical function ¢) are precisely those depending only on the
ranks of the observations. It further turns out that the maximal invariant
partition in the space of distributions coincides with our partition of the al-
ternatives into nonparametric classes. Thus in particular, Theorems 3.1 and
7.1 are special cases of Theorem 8.1.

We shall now prove the correspondence just indicated in the case of the two-
sample problem. The analogous result for the hypothesis of independence can
be proved in much the same way. The sample space X is the m + n-dimen-
sional Euclidean space of points (i, -, Tm, ¥1, ***, Ya). The family & is
the family of all pairs (F, G) of continuous distribution functions. To define the
class of transformations, consider the totality of real-valued (not necessarily
continuous) functions 7 of a real variable which are strictly increasing and such
that 7(d= o) = 4 o. The transformations of § are obtained by applying the
same function 7 to all coordinates z; and y; . Since each 7 is strictly increasing
the inverse functions 7 are uniquely defined and their domains may be ex-
tended to be the entire real line through the condition that 7~* should be every-
where nondecreasing. This will insure also that = is continuous. With these
conventions, if a random variable X has continuous cdf F, the variable X again
has a continuous cdf, which is given by

(8.5) 7F = F(™).
It is clear that the maximal invariant with respect to $ is given by the ranks
of Xi, -+, Xm, Y1, .-+, Y,, that is, by the equivalence
(231, s Zmy, Yr, o )yn)N (x;) te 7-’17'/'!'::‘/;7 yyln)

if and only if the two sets of numbers are in the same order. This relationship
certainly is invariant, since with respect to a strictly increasing function the
ordinates are in the same order relation as the abscissae. Conversely, given
any two such sets or numbers there exists a strictly increasing function taking
the first into the second.

What we shall now prove is that the maximal invariant classes in the space
of distributions coincide with the classes (f(F), g(F)) of Section 4. In fact, we
shall prove the more precise statement. The relation

Fi(r7") = Fo(7),

(8.6) . C
Gi(17) = Go(73)

is equivalent to

Fy = f(F), G =g(F)

Fy = f(F'), G:=g(F")

where all the symbols have the significance given to them earlier. We first state
the obvious

8.7
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LeEmMA 8.2.
(a) Given any two continuous cdf’s F, F' there exist continuous, nondecreasing
functions 77>, 73" such that

(8.8) F(r1") = F'(53).
(b) Given any two continuous cdf’s Fy , Gy there exist f, g, F such that
(8.9) Fy = f(F), G = g(F)

and such that F(x) = F(y) whenever Fi(x) = Fi(y) and Gi(z) = Gi(y).
Suppose now that (8.7) holds and let r,, 7, be defined so as to satisfy (8.8).
Then

Fi(s7") = f(F(s7) = f(F'(177)) = Falrs’

and analogously for the G’s.
To prove the converse, assume that (8.6) holds and that f, g, F are defined
so as to satisfy (8.9) as well as the side condition imposed there. If we put

(8.10) F' = F(r7'(r2))

we have that f(F') = Fi(+7'(2)) = Fu(r3'(r2)) = F, and similarly that
g(F’) = (,. Thus our result is established provided we can show that F’ as
defined by (8.10) is continuous.

Since F and 77’ are continuous by assumption, discontinuities in F’ can
result only from discontinuities in 7.. Suppose therefore that 7(x—) = a,
ro(x+) = b. Then 75'(a) = 77'(b) and hence because of (8.6) Fi(r7'(a)) =
Fi(77' (), Gi(rT'(a)) = Gy(+7(b)). The assumption following (8.9) then implies
F(:7'(a)) = F(+7'(b)) and therefore F'(x—) = F'(z+).
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