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NOTE ON COMPUTATION OF ORTHOGONAL PREDICTORS
By Braprorp F. KiMBALL
New York State Department of Public Service

Summary. The present note calls attention to a simple algorithm for computa-
tion of the orthogonal matrix associated with the matrix of the normal equations
of least squares. An application of the “forward” solution associated with the
orthogonalization process is also pointed out.

1. Introduction. This note is supplementary to Dwyer’s recent book Linear
Computations, [1]. The author also acknowledges reference to extensive unpub-
lished notes on matrix analysis of numerical methods kindly furnished him by
A. S. Householder.

Orthogonalization of the predicting variables of the least square problem has
been considered since the introduction of orthogonal polynomials into the least-
squares problem by Tchebycheff 1853-73 and the significant doctoral dis-
sertation of the Danish mathematician and actuary, J. P. Gram, in 1879, [3].
A discussion of the problem is also to be found in Poincaré’s Calcul des Proba-
bilités, 1912, Chapter XV. Various methods of simplifying the computations for
purposes of mass application to statistical data have been studied since then. A
complete bibliography is beyond the scope of this note.

The advantages of obtaining the solution of the least squares problem in terms
of orthogonal predictors are numerous. Perhaps the most obvious are those asso-
ciated with the resulting simplified expressions for the error formulae, correla-
tions [2] and sampling variance of the fitted function [5]. Also the orthogonaliza-
tion of the predicting variables is a starting point for the computation of princi-
pal components significant to structural relationships in psychology and eco-
nomics. A further application of the associated “forward’ solution is pointed
out in connection with the lemma stated in Section 4 of the present paper.

Two solutions are obtained. One is in terms of a slight extension of the algo-
rithm of the square root method of solving the normal equations [2], and the
other is in terms of the algorithm of the Gauss-Doolittle method. The first
method has the advantage that the coefficients of the orthogonal predictors have
unit sampling variance weight. The second method is based on the more familiar
Doolittle algorithm and does not involve square roots.

There seems to be some need for standardization of notation in matrix analy-
sis. Since Householder has presented a consistent application of matrix analysis
to a large body of material, we shall keep to his notation in the following re-
spects. Capitals will be used for matrices and the transpose of a matrix will be
indicated by the superscript T rather than by a prime. Single row or column
matrices and vectors will be denoted by small letters.
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2. Derivation of orthogonal matrix from matrix theory. Let
(21) X=”x1i’x2.")"'7xni”7 j=1y2""N’n§N

denote the N rowed matrix of the N observations on the n predictor variables
z;; . With the subscript j suppressed, the observations on the n original predictor
variables are treated as column vectors z;, 7 = 1 to n.

Consider a matrix V of n rows and columns. The product matrix XV7” will
consist of #» columns, each of which is a linear transform of the n columns of
the data matrix X. Hence, if the n linear functions defined in the n columns are
to be orthonormal, the following matrix relation must obtain

(2.2) XVH'XVT) =1,

wheré I denotes the identity matrix. .
From general matrix theory (XV™)" = VX7, and (2.2) can be written [4]

2.3) VX'X)VT = L.

For purposes of setting up an algorithm for computation of V we introduce
the triangular matrices of the Gauss-Doolittle and square root methods. Using
Dwyer’s notation, but replacing small letters by capitals where matrices are
referred to, the upper triangular matrix of the summation rows of the Doolittle
process is denoted by G, and the corresponding matrix (after division of the
kth row by the square root of gw.) for the square root method is denoted by S
(see [1] p. 188). Let D denote the diagonal matrix composed of the diagonal
elements of G. Then

(2.4) S = D'G".

Denoting the matrix of the moments of the predictor variables by A, the fact
that S factors A is expressed as

(2.5) A=X"X = S8"S.
Substituting in (2.3) we find V(8"S)V" = I which can be written
(2.6) (SVHT(SV") = I.
A meaningful solution of this equation is given by
2.7) svi=1 V'=8", V=@
and using (2.4) the solution can also be written as
(2.8) V' = (@)D

3. Computational algorithm for orthogonal multipliers. Dwyer has pointed
out that the inverse of the matrix S can be very directly computed by using the
identity matrix for the reference matrix of the dependent variable on the right
in a computational schedule similar to the familiar Doolittle algorithm ([1] pp.
191 and 197, explicit in Table 13.6b and implicit in Table 13.8a).
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For reference purposes we reproduce the schedule for n = 3 in terms of
symbols, omitting the secondary subscripts: .

au Oz 0O, 1 0 O
A=* an an 0 1 0 =1
* * as3 0 0 1
Su Sz S mw 0 O
S=0 S92 823 Va1 Vg 0 = V.
0 0 833 VUs1 Uz Uss

Because of the symmetry of the A matrix the computational algorithm
assures that SV7 = I. Denote the 7 columns of the product matrix XV” by the
column vectors ’

3.1) b1 = vuTi, b = UnTs + UnTy, - e bn = D Unili.

These vectors constitute a set of n mutually orthogonal vectors which are linear
transforms of the original set. They take the classical form, which one would
expect, and are a “normal” set, since dide = 1.

For the uninitiated who are not familiar with the square-root method, or who
prefer to use the Gauss-Doolittle method in the solution of the problem of least
squares, recall from (2.8) that V = DG and note that G is given by the
triangular matrix represented by the lower of the doublet of rows extending
under the identity reference matrix of the Doolittle algorithm ([1] p. 191, Table
13.6a). It follows that the triangular matrix from the upper of the doublet of
rows, which we denote by R, satisfies the relation

(3.2) R = D'v.

_Thus a set of mutually orthogonal vectors ¥ is determined by the columns of
the matrix product XR”. These, although simpler to compute than the ¢,
have the disadvantage that ¥i¥x = gu . One can of course compute ¢; from
¥« by simply dividing through by /g -

4. Accessory relations. Let y denote a column vector of N observations on the
variable to be fitted in a least squares problem and let ¢ denote the column
vector of the coefficients of the orthogonal predictors ¢, . Recalling that ® = X |4
represents ah n column, N row matrix, conventional solution of the normal
equations by matrix analysis leads to [4]

(4.1) t=2"y, &= ¢y
Furthermore it is easily seen from matrix analysis that
X =VX'X=V88=1I8S=S8
and hence
4.2) Sk = i, 1 # 0.



302 BRADFORD F. KIMBALL
Since the algorithm for finding s, in the y column is operationally the same as
that used for finding s in the x; column, it follows that
(4.3) S = $y = b
and hence the fitted function u is given explicitly by
(£.9) w =2 by = 2 S,
&k = Vnly + Vese +, o, + Vi, k=12 :--m.

Clearly if computations are based on the Doolittle algorithm and the predictors
¥r are used, similar relations will hold:

(4.5) gri = Yie®i, . i # 0; g0 = Yiy,
and the coefficients of the predicting variables ¥, will be given by
(4.6) bro = Gro/ G -

A forward solution is furnished by solving the above relations for the co-
efficients of z; in the fitted function. Denoting these coefficients by the column
vector h, we have u = ® = Xh. Since X is not in general a square matrix, this
equation is solved for 2 by multiplying it by what has been called the ‘“pseudo-
inverse” of X; namely, (X"X)™X”. The result is

b= (X"X)(Xt) = (XTX) X X)VL = VL.

In explicit, nonmatrix form

hy = twn + tn + --- + tam
hy = b + -+ + latns
(A7)
hn—l = tn—lvn——-l,n-—l + tnvn,n—l
hn = tnn -

A useful point about this forward solution which may easily be passed over
without recognition is the following.

LemMA. If &, & -+ & are determined as éiy, é1y, - , diy, then
hi, he, -+, h derived from the above schedule (4.7) will satisfy the first k normal
equations of the n predictor problem for arbitrary values of teq1 , tege, <+ , tn.

The proof: follows by applying the first £ conditions for minimizing the sum
of the squares of the deviations to the orthogonal form of the solution (4.4).

The writer has found application of this lemma to the following problem.
Several linear functions are to be fitted to separate groups of data by least
squares, where, say, one of the coefficients is to be determined so that it is
optimum for all the groups lumped together, and the other coefficients are to be
determined separately for each separate group. (One such application will be
discussed by the author in an article which will appear shortly in the Journal of
the American Statistical Association.)
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ON THE ASYMPTOTIC NORMALITY OF CERTAIN RANK ORDER
STATISTICS!

By MEYER Dwass

Northwestern University

1. Summary. Let (R;, ---, Rx) be a random vector which takes on each of
the N! permutations of the numbers (1, - -- , N) with equal probability, 1/N!.
Sufficient conditions are given for the asymptotic normality of Sy = Z’}'.,lamb,m ,
where (ax1, * -+, axn), (by1, + -+, bww) are two sets of real numbers.given for
every N. These sufficient conditions are apparently quite different from those
given by Wald and Wolfowitz [9] and extended by various writers [4, 7]. In some
situations the conditions given here may be easier to apply than those given
previously. The most general conditions available to date appear to be those of
Hoeffding [4]. In the examples below, however, is given a case of an Sy which
does not satisfy the conditions required by Hoeffding’s theorem but which is
asymptotically normal by our results.

2. Statement of theorem and its proof. We will assume hereafter that

N N N
Z:lam=_zzbm=0, Zlafv.-=1.

THEOREM. Suppose for an integer £ = 1 there is a random variable X satis-
fying the following conditions:

(a) X has a continuous cdf F(x),
(b) if X;, -+, Xu are independent random variables each with the cdf

F(z) and Zy; £ --+ £ Zyw are the ordered values of X;, ---, Xy then
N
bvi = EZy: — X, EZyy/N
=1

for all N and <.
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