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1. Summary. Let the random variable X = (X;, Xz, ---, X.) have the
probability density

det! @ _pqur
p(x) = W e

where zQz’ is positive definite. The present article salves, by means of Laguer-
rian expansions, the problem of finding the distribution of any nonnegative
quadratic form XPX’. If the semimoments (defined below) are known, it also
solves, by means of Laguerrian expansions the problems of finding the distribu-
tion of any indefinite quadratic form, and the distribution of the ratio of any
indefinite quadratic form to any nonnegative quadratic form. For an outline
of the procedure, see Section 2. If the distribution of the indefinite form is sym-
metrie, the semimoments are easily found, but often, especially for the tech-
nique described below for ratios, the semimoments are difficult to obtain. In
view of this, a new system of orthogonal polynomials is proposed, which is
analogous to the Laguerre system, but which obviates the need of semimoments.

2. Introduction. There are various distribution problems associated with a
quadratic form or a ratio of quadratic forms. Suppose P and @ are arbitrary sym-
metric n X n matrices of known constants. The notation (DQ):, (DR);, (DQ)«
(DR)xs (z = 1, 2) refers to the following distribution problems:

(DQ); : Find the distribution of XQX".

(DQ), : Same as (DQ), , but with @ nonnegative.

(DR), : Find the distribution of XQX’/XPX’, but with P nonnegative.

(DR); : Same as (DR), but also with @ nonnegative.

(DQ)11, (DQ)z : Same as (DQ),, (DQ), respectively, with the further re-
striction that @ = I and @ is diagonal. (I denotes the unit n X »
matrix).

(DR)11, (DR)y : Same as (DR),, (DR), respectively, with the further re.
‘striction that @ = I and both P and Q are diagonal.

It should be noted that although it is always possible by a linear transforma-
tion to reduce (DQ); to (DQ)a, (i = 1, 2), the same is not true for reducing
(DR); to (DR):1 . In fact, a necessary and sufficient condition for the latter
reduction is (cf. Weyl [11]) PGQ = QGP where G = T'T’, and T is a matrix such
that 77QT = I.

It is possible, however, to reduce (DR); to (DQ)u by means of a linear trans-
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formation. This will be shown in the following section. It is relevant to add that
Robbins [7], and Pitman and Robbins [6] have solved, by means of certain con-
vergent series, (DQ); and a certain subclass of (DR)s . The present article differs
mainly in two respects. First, the more general problems (DQ), and (DR), are
considered here. Second, only Laguerrian expansions are used. It may be added
here that the distribution of quadratic forms or ratios of quadratic forms for
certain cases has been investigated by McCarthy [13], von Neumann [14],
and Bhattacharyya [15]. It may be noted further that Bhattacharyya [16] and
Hotelling [17] have employed Laguerrian expansions for the cases they consider.

For convenience in applying the results obtained in this paper, the procedure
will be outlined, as follows.

I. (DQ):. Reduce to (DQ)sy , so that XQX’ = Y v;Y} where Y has density
f(y) given by (2). By a change of scale arrange that-0 < y; < 1. Let F(z) =

P{XQX' = z} and K(z) = _[ g(t) dt with g¢(f) assigned by (14). Compute

the moments w; = E(XQX')*. The Laguerrian expansion (convergent, here) of
F(x) — K(x) is given by (10), where

() L (z) is defined by (4) or (5),

. (a) _ _(a=1) _ = 1) n -+ a\ gy

() 49 = i = T -0 (2T 8

v=0

II. (DQ): . Reduce to (DQ)n so that XQX" = D 1y, Y: — D ontre 4, y?
where 0 < v; < 1 (arranged by change of scale) and Y has density f(y) given by
(2). K(z) and F(z) have the same meaning as in I. Compute the semimoments

8k=f"' f[nizwy?:lkf(y) dy

where the region of integration is given by > i**"2 v} = 0. If the density of
XQX' is symmetric, its characteristic function may be used to find the &’s,
without requiring explicit knowledge of the #’s. The Laguerrian expansion
(convergent here) of F(z) — K(z) for x > 0 is given by (10), with

@ a— n +
AP = a(n+11) - (n + ‘;) [60 — 1].
For x = 0, and z < 0, see Section 7.
II1. (DR)l . Reduce to (DQ)1; by method of Section 3, so that

G(z) = P{% < z} = P{Z:: MR)YE S 0}

where Y has density f(y) given by (2). By a change of scale, it is possible to
write | Ni(z) | < 1. The method then follows that of II., replacing v; there by
)\;(Z).

3. Reduction of the (DR), problem. For any real z,let R, = Q — zP and
G(z) = P{(XQX")/(XPX') < z}. Setting H.(¥) = P{XR.X* £ ¢} it follows
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(recalling that Pz’ is nonnegative) that-H,(0) = G(2). Let\i(z) (¢ = 1,2, -+ - ,n)
be the roots of det (R, — AQ2) = 0 and A, be a diagonal matrix with these roots
as the diagonal elements. The roots A;(2) will all be real, and there exists a
matrix 7" such that (cf. Bocher [1]) T'QT = I and T'R,T = A,.

Hence

) H.()) = P{XAX' = &}

where X has the probability density

1\2 —4zz’
@) @ = ()

™

Now XA, X' is a linear combination of independent random variables each of
which is distributed as x* with one degree of freedom. The (DR); problem of
determining G(z2) thus reduces to the special (DQ)y; problem of finding H,(0),
that is, the distribution of this linear combination at the single point ¢ = 0. Geo-
metrically, this may be interpreted as the problem of finding the probability
measure of the interior of the cone zA,2” = 0 when the probability density of X
is given by (2).

In anticipation of Section 7 it should be remarked here that in determining the
semimoments of X A,X’ it is sometimes not necessary to find the roots \;(z).
For, by the uniqueness of the characteristic function

det™ (@ — 2itR,) = [I_]1 a- 2i)\j(z)t)j|—%

the moments are found upon evaluating the derivatives at ¢ = 0, and dividing
by the appropriate power of the imaginary number . If, for instance, the density
of XA, X' is symmetric, the semimoments are just half the corresponding
moments.

It is also of some interest to see how the reduction of the (DR), problem is
accomplished to yield directly the probability density of the ratio. Of course, the
probability density could be obtained by differentiation of the distribution
function, but this might not be advisable or feasible, depending on the con-
vergence properties of the approximation used in determining the distribution
function.

The following theorem will now be proved. This theorem applies generally,
irrespective of quadratic forms, to any ratio (absolutely continuous random
variable, positive denominator) and any probability density p(z).

TueoreM 1. Let X have probability density p(x), and define K and q(y) by

g ’
K= [ aPrp@)ar,  qt) = EYPW).

" Then, the probability density G'(2) 1s given by Kr,(0) where r.(£) is the probability
density of the random variable YR,Y’ when q(y) s the density of Y.
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Proor. From the theory of inversion formulae (cf. Gurland [4])
@ = L ?’ [M]
G (Z) - 27|'i at2 tog=—1t,2 dtl

¢(tl , t2) — E(eu,xox'h‘tzxpx')

—€ T
and the notation f signifies lim < f + / > Now
—T €

where

e—0

T -0
l:a_‘f’] = Ki f e 7 o(z) do = Ki,(t)
Ote_|tgm—ty2 o

where 6,(¢) is the characteristic function of XR.X’ when X has the probability
density ¢(x). Hence

@@=§fmm=mm)

by inversion of Fourier transforms. This completes the proof.
Before applying some results of this section, we shall, at this point, state some
theorems relating to Laguerrian series.

4. Laguerrian series. By a Laguerrian series is meant an expansion of the
form

) f@) ~ 22 ¢ L (x)
where
(a) — 1 r —a d " nta —z
(4) L (:v)—;b—!ex <_d-5> (" %) a> —1.
The sign of equivalence in (3) indicates the coefficients ¢\ are determined by
cs'a) _ I'(n 4 1) e—ttaL(:)(t)f(t) dt

T Tnta+ Db

in view of the orthogonality realtions

@ [ 0’ m #En
j; e—ttaLr(na)(t)Lgna)(t) dt = ir(n + a +1) men
Tn + 1) °
From (4) it follows that
(a) _yw(n+a (—=x)"
®) e = 3 (2R &2

. Before stating the following theorem, the notion of equiconvergence of series
will be recalled. If the series 2 g (u, — Av,) is convergent, where A is a non-
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zero constant, then the series 2. ., 2o . are said to be equiconvergent.
It is also convenient to recall the definitions of O(g(x)) and o(g(z))

f(x) = O(g(x), * — x means (f(z))/(g(x)) remains bounded as x — o
f(x) = 0(g(x)), £ — 2o, méans (f(z))/(9(x)) — 0 asx — .

THEOREM 2. (Szegd [9]). Let f(x) be Legesgue measurable, 0 = x < «, and
let the integrals

1 1
a al2-1/4
®) [ @ an, [ o) | de
exist. If the condition
) f‘ 2 2% | () | d = oY

is satisfied, and if sn(x) denotes the nth partial sum of the Laguerre series (3), we
have, forx > 0

® im fo.) — 2 [ gy SR = M gl g

where & is a fived positive.number, 8 < z*. This holds uniformly for every fixed
positive interval e = z < w, § < el

The same equiconvergence theorem (8) is valid if the intergals (6) exist and
(7) is replaced by the following:

0
j; e——zlzxalz—a“ If(x) I dz
is convergent, and
0
f 2" (z)? de = o(n™*'%).

The mtegral occurring in (8) is essentially the partial sum of order Y] of a
Fourier series, where as usual [n!] denotes the largest integer <n'. A sufficient
condition for the validity of (8) is

f(:t) = O(ez/2x —-a/2—1l4—6)’ 5> 0’ z— o,

Before quoting a second theorem of Szegd, which ensures summability of (3)
at z = 0, we recall the definition of Cesaro summability. Let s, denote the nth
partial sum 2 qu,. The series > ®u, is said to be (C, k) summable (cf.
Zygmund [12]), k¥ > —1, to the sum s if lima.s%’/C%’ = s where

m+kn+k—1--Gk+1)

n!

n n
k k—1 k
sgn) = Z Cﬁ.—r) 8§ = Eocn—r Uy .
==

r=a()

)
Cn =
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TeEOREM 3. (Szegd [9]). Let f(x) be measurable 0 < 2 < «, and continuous
at x = 0. If we assume the existence of the integral

©® [ 15w | a0

the Laguerrian series (3) is summable (C, k) at £ = 0 to the sum f(0), provided
k > o + 1. This statement is not true for k < o + 3.
The condition regarding (9) is satisfied if

f(z) = 0(" &7, 6>0, z— .
It should be remarked that for the case x = 0, the kth Cesaro mean has the
simplified form
(CP T+ D) [ e FOLEHO0) i
0
6. Laguerrian expansions for distribution functions. Let a random variable
have the distribution function F(z) = f p(¢) dt. By analogy with Gram-

Charlier series, we may consider

p@) ~ 72" 2 al¥Ly (x)
n=0

(10) i
F(z) — K(z) ~ ¢z" Eo AL (z)
where
al? = f i p(OLL(t) dt
0
(11)

49 = [T @) - KIS at
0
and K(z) is a conveniently chosen distribution function

(12) K@) = L o(0) dt.

Note that a'®, A are linear functions of the “moments” taken over the
interval (0, «) and not (— «, «). We shall call such moments ‘“semimoments.”

It is in order at this point to remark why Laguerrian rather than Gram-
Charlier series are being considered here for the aforementioned distribution

problems. The main reason is that Cramér’s condition ([3], p. 233) [ e /4

dF(x) < = sufficient for convergence, is not satisfied for these problems ;l and the
" theorems which guarantee Cesaro or Abel summability (cf. Szego [9], Hille
[5]) do not relax Cramér’s condition very much if at all.
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In this paper, expansions of the type (10) will be considered. In order to
simplify the formula (11) for 4 () it necessary to refer to the following lemma.

Lemuma 1. If all the absolute moments corresponding to F(z) and K(x) are
finite, then .

F(x) — K(z) = o(z™"), z2— oo
for allr > 0.
Proor'. Let M, = f | t|” p(t) dt. Then

M, = f t'p(t) dt = " f p(t) di.
Hence )

/ p(t) dt = 0@x™"), z— o,
Similarly for f g(t) dt. By similar reasoning it can also be shown that

[: p(t) dt = 0(z™), [: g(®) dt = 0(@™) z— —oo,
Since we can write
P& — K@ | = |1-K@ - 0~ F@) | s [ s0a+ [ p0a
or
1F@ - K@ | s [ s d+ [ g0 a

the required result follows.
To apply this lemma, let M () be such a polynomial that

4 u0@) = L @)
dx

and, for conyenience, let M (2(0) = 0. Since
- 4 [ @) = —L (@),
as can be seen from (5), it follows that
(@ _ 7,l==D n+ a
wow = {1 - (019
R —

1 The author is grateful to Morton Slater for his assistance in greatly simplifying the
above proof.
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Integrating by parts the expression for A$® and applying Lemma 1, AP
becomes

A0 = — f i MP@Wp® — g dt
(13) " .
- o - v = (01 9) [0 — g1 a
where

I

a$® f L2 @Wp) dt, b5 =f L @g() dt.
) 0
By choosing

g(x)=mxe x>0

(14)

|
o

IS
IIA
o=

the expression (13) simplifies to

(15) A = glo7d — (Z j: ‘;‘) j i [p(t) — g(®)] dt:

If, further, p(t) = Ofor ¢ < 0 (as, for instance, in the (D@); problem), the formula
becomes

(16) ALY = i7",

6. Solution to the (DQ), problem. Before proceeding to the solution, it is
necessary to establish the following lemma.

Lemma 2% Let X have the probability density f(x) gwen by (2). Define
U = D7 v:X; where the constants v; satisfy 0 < v; < 1. Denote the probability
density of U by py(w). Then

u(n/2)—-le—-(ulﬁ)(l+t’) (n/?-)—le—(u/2)(l+e)

u

it (g)l:r:l w]i < pow) £ i (g)[l:n]_ %]; )

u>0

where

1+e’=max1, 1+«e=minl—.
i Y i Y

2 The author is grateful to Ray Mickey for his assistance in greatly simplifying the
formulation and proof of this lemma.
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Proor. Apply to (2) the transformation
2= Vi i=12"--,n.

Then .
1 n 2
Pz(2) = T exp [— %Z f-']
I ] enr T
and

[—é 1+ ;z’]

1 m-]* (VE)"

[ -

Lt
u<zs <utldu
1

dz = ff pz(2) dz
u<é:s§<u+Au )

ﬁ[—l (1+934]

< [ [ =2 de.

[S:: ‘Ys':r (V2"

u<§s’< utdu
)
1

By applying the mean value theorem of integral calculus, and letting v — 0,
the required result follows.

To apply this lemma, suppose (DQ); has been reduced to (DQ) . Let XQX' =
S v X:, where 0 < v; < 1 and X has the probability density (2). Hence, by

Lemma 2,

Now, with K(z) defined by (12) and (14), it follows that
1 — K(z) = 0(¢~z*"), T — o,
Thus,
[F(z) — K(z)] €2~ = O (max {¢*"92"*% z}), z— o,

Theorem 2 is now applicable to establish the convergence of the expansion (10),
with 4 given by (16). By Theorem 2, the series for F(z) — K(z) will con-
verge at each point z if the Fourier series converges there. Since F(r) — K(r)
is of bounded variation, convergence is assured by Jordan’s test (cf. Titchmarsh
[10]).

7. Solutions to (DQ); and (DR), if the semimoments are known. As re-
marked in Section 1, there may be instances where the semimoments are easily
found, as in the case of an indefinite quadratic form with a symmetric proba-
bility density. Before applying the convergence theorems of Section 4 it is
necessary to establish the following lemma.
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LemMa 3. Let X have the probability density (2) and define

ny ni4ng
Ur=2 vXi, U= y: X3
1 ny+l
where 0 < vi < 1,n; + ny = n, i = 1,2, - -+, n). Denote by py(v) the proba-
bility density of V = U, — U:. Then

17 f pr() dy = O(e™ /DI, z — @

(18) _[ pr() dv = O(e~1=/P U | g 2%, z— —®

where 1 + ¢ = min; v;".
Proor. By Lemma 2

(uy4ug) (14 12)—1, /2) -1
pUl.Ug(ul , u2) < Ce—-l uy+ug c)ul(nx u;»z )

ot = v () [Ti].

where

Hence

00
f prlo) dv < f f . Com i (wrun (0, /D=1y /D=1 g0 o)
z Ul— U ST

iy fo f"’ AT Gurtn () g ymiity it g gy
vemz J ugml

Now

1/

ny/2 ny/2 U2 "/t ny/2 n/2
O+ w = (14 %) <+ )

since v > 1 (because z —  in (17)). The validity of (17) follows, since

j,ao e_(1+¢)u’(1 + uz)ullzmn,/z d‘ug < o,

0

Also, since

‘[:z pv(v) dv = ffw_u’s_z Doy vs(ur , ug) duy dus

= ff - pUhUa(ulr"h)duldu‘z, z>0
uU— U122

the result (18) is established by an argument similar to that for (17).
In applying the result of Lemma 3 to (DQ),, it may be assumed XQX "is in
the form U, — Ua (as can be effected by a linear transformation). If, also, K(z)
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is defined by means of (14), then {F(x) — K(z)}e"z™* will satisfy the conditions
of Theorems 2 and 3. Consequently, the expansion (10), with 4% given by
(15) will converge (See the last remark of Section 6) for z > 0, while forx = 0
it will be (C, 1) summable if « is ¢hosen to be zero in Theorem 3.

For z < 0, the result of Theorem 2 applies by considering the expansion of
F(—z) — K(—xz).

Lemma 3 may also be applied in solving the (DR), problem by using the
reduction of Section 3, and employing the same type of argument as for the
(D@)1 problem above, to show that Theorem 3 ensures the (C, 1) summability
of the Laguerrian expansion at z = 0.

8. Proposed system of polynomials for the general solution of (DQ), , (DR), .
As mentioned above, the semimoments are often difficult to obtain. The con-
vergence properties of Laguerrian expansions are most convenient, but the
main shortcoming is that the weight function is zero over the range (— «, 0).
What is required is a nonzero weight function over (— e, «) which would
generate a system of orthogonal polynomials behaving asymptotically in a
manner similar to the Laguerrian system. In such a case, ordinary moments
rather than semimoments would be used in the determination of the coefficients
of the expansion, and, these ordinary moments can be found without difficulty.
An orthogonal polynominal system which seems to suggest itself naturally is
that generated, according to the Gram-Schmidt process (cf. Courant-Ililbert
[2]), by means of the weight function

w(x) = ¢z |7 —w <z < o,

Shohat [8] has shown that for weight functions similar to this, the resulting
system of polynomials is complete, but there appears to be no treatment of the
convergence properties of such a system in the literature on orthogonal poly-

. nomials. If, as conjectured, this system behaves similarly to the Laguerrian
system, then a much larger class of distribution functions will be expansible in
convergent (or summable) series than the class to which Gram-Charlier series

apply.
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