GENERALIZATION OF THE THEOREM OF GLIVENKO-CANTELLI

By J. WoLrowiTz
Cornell University and University of California at Los Angeles
Let X;, X., - - - be independent. chance variables with the same distribution

function F(z). (F(z) is the probability that X; < z.) The “empiric” distribution
function Fi(z) of X1, -+ , X, is given by

where
¥s(a) = 0, z=a
=1, T > a.

Thus F%(z) is 1/n times the number of X, , - -+, X, which are less than x. We
define the distance 8(G; , Gz) between the two distribution functions G; and G- as

(2) B(Gl y Gz) = SUupz | G’l(x) el Gz(x) |.

Let P{ } denote the probability of the relation in braces. The theorem of Gli-
venko-Cantelli (see, for example [1], page 260) states that

3) P{lim,_ 8(F(x), Fa(z)) = 0} = 1.

Let Y = X3, -+, X%, X3, - e Xfé, .-+, ad inf. be a sequence of independent,
chance variables such that Xi, X3, ---, ad inf. have the same distribution
function (say Fi(z)), 7 = 1,---, k. Let ¢;, ¢ = 1, --+, k, be real parameters.
We shall prove the following generalization of the theorem of Glivenko-Cantelli.

TaEOREM. Let ¢ = (q1, -*+, qi). Let F(x | q) be the distribution function of

k1 q:iXi. Let Fy(z | q) be the empiric distribution function of

(Zl:=1 th;)a j = 1’ e, M.
Then
(4) P{lim,_. sup, 8(F(z | ¢), Fa(z|g)) = 0} = 1.

This stronger version of the Glivenko-Cantelli theorem will prove useful in
mathematical statistics for the purpose of estimating unknown distribution
functions. We have already made use of essentially our result in [2], [3], and [4].

For typographical simplicity we shall carry through the proof for £ = 2, and
leave to the reader the easy verification of the fact that the method is valid for
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132 J. WOLFOWITZ

all k. It is easy to see that, when k = 2, we may, without loss of generality,
take ¢ = 1. We write ¢ = p. Thus ¢ = (p, 1).

LemMA 1. Let A, 7, and e be positive and Q be any number. There exists a positive
integer N (e, 1, Q) (which is a function only of the variables exhibited) such that

P{s(F(x | p), Fa(z|p)) < n + 2M(AH),
(5) n=N,N+1,---,adinf,
lp—Q|=A}>1—¢

where H s any positive number such that H and —H are both points of continuity
Of F l(x)s

F(H) = F(—H) >1 -1,

and
M) = sup, | Fo(x) — Fo(x — v) |.

Proor. From the theorem of Glivenko-Cantelli we obtain that, for some
N 0(57 m Q);

(6) P{a(F(xIQ),F:(xIQ)) < '71) n = NO,NO + 1) e )adinf'} >1- 56
From the strong law of large numbers we have that, for some Ni(e, 7),

P{n“ Z; Wa(X) — y_a(XD] > 1 — 21,
)
n = Ny, Ny + 1,---,a.d'mf.}> 1 —§‘.

Thus the probability of the event

{1010 Fie10) < 317 5 a0 = pealX > 1 - 2,

@®)
n = Nz, N, + 1, ---,adinf.}

exceeds 1 — ¢, where N; = max (No, Ny). The event whose probability is
bounded in (7) in conjunction with |[p — Q| = A, implies

9) F’:(x—AHlQ)—ggF:(xlp)gF’f.(x+AHlQ>+g

forn = N1, Ny + 1, -- -, ad inf. The event whose probability is bounded in
(6), together with (9), implies

(1)  Fe—aH|Q -2 s Fik|p) S Feo+AH|Q) + 3

forn = N;, N+ 1, -+, ad inf.
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From the formula for a convolution we obtain immediately that for any p
and any z

(11) | F(z — AH |p) — F(z | p) | £ M(AH).
Hence (10) implies .

(12) F|Q —%”—M(AH) SFiz|p) SF(z|Q) +%+M(AH)

forn = Ny, N; + 1, - -+, ad inf.
Finally we consider
(13) 8(F(z|Q), F(z|p)) = sup. | P{QX1 + Xi < z} — P{pXi + X; <=} |.
We have i
P{pXi + Xi < z} = P{QXi + Xi + (p — Q)Xi < z}

(14) 1 2 n 1 2 - n
< P{QX: + Xi < z + AH} +§§P{QX1+X1 < z} +§+M(AH)-

Similarly
(15) P{pX! + X} <z} = P{QX} + X! < o} — 3 — M@H)

(12), (14), and (15) imply
(16) 3(F(z|p), Fa(x|p)) = n + 2M(AH).

This proves Lemma 1 with N(e, 7, Q) = N, .
LeMMa 2. Let € and y be arbitrary positive numbers. If Fy(z) is continuous there
exist positive functions K(e, 1) and N (e, n) such that

an P{s(F(z|p), Fa(z|p)) <mn=N,N+1,---,adinf,|p| 2 K}
>1—ce

Proor. Since Fi(x) is continuous it is uniformly continuous. Let ~ be such
that | z; — za| £ h implies | Fi(z:) — Fi(z2) | < 7/10. Let K, > 0 be-such that
Fo(Ky) — Fo(—Kp) > 1 — /10, and K, and — K, are both points of continuity
of Fy(z). Now, if | p | > Ko/h, then

| P{pX1 + Xi < z} — P{pXi < z} |
(18) n x+Ko x 7
§-16+31:p|F1< >—F1<——-><3.

For N, sufficiently large we have

(19) P{a(Fl(x), Fi.(2)) < %, n=N,N-+1---,ad inf.} >1 - 5
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where F¥,(z) is the empiric distribution function of X}, X3, -+, X». Ob-
viously

(20) s, wta@) = (£ (2), 7. (%))
] P P
(18), (19), and (20) imply that
21) P{B(F(x | ), Fin (%)) < %—g,n =N, N1+ 1,---,ad inf.} >1- —26-
From the strong law of large numbers it follows that, for N; sufficiently large,
P 5 e — von (XD > 1= 1,
(22)

n=N2,N2+1,--.,adinf.}>1—5.

Now p > Ko/h together with the event whose probability is bounded in (22)
implies the event

w (T — Ko\ _ 1 _ 5% *($+Ko) n
{F1n< p ) 5=Fn(x|p).§F1n p 57

n=N2,N2+1,--~,a.dinf.}

From (19), (20), (22), (23), and the definition of » we obtain, with N3 = max
(N1 5 Nz), that

* () -1 < p* A )
P{F1n<p) 2=Fn(x|p)§F1n(p>+2,

n=N3,N3+1,~--,adinf.,p>Eh9}>l—e.

(24)

The same result obviously holds for p < —Ko/h. From (24) and (21) we obtain
the desired result with K(e, ) = Ko/h, and N(e, 9) = N;.
LeEMMA 3. Lemma 2 holds even when Fi(x) is not continuous.

Proor. Let dy, dy, --- be the (necessarily denumerable) points of discon-
tinuity of Fy(z) and let ¢; be the saltus of Fi(z) at d;, ¢ = 1,2, --- , ad inf. Let
r be such that
(25) ;1 t < 15-

Write Fi(z) = Fi(z) + Fi(z), where Fi(z) is continuous and nondecreasing,
F;(x) is a nondecreasing step-function with saltuses of size ¢; at the points d.,
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i=1,2, +--,adinf., and Fi(— ) = F3(—®) = 0. Define
h=1— Y 2ut;
& =t (E=1,---,r.
=1 — it

We shall assume that p > 0 and & > 0. The modifications needed in the proof
below when p < 0 and/or t5 = 0 will be obvious. Let Wj, ,j = 0,1, -+ ,r 4+ 1;
n = 1,2, --. , ad inf., be chance variables distributed independently of each
other and of the elements of Y, with distributions given by the following (for
all n):

1,
P{Won < x} = t'O;EF1(x)\

P{Win=di} =1 G=1-,7).
P{Weina =0} =1

Let Z,,n = 1,2, ---, ad inf., be (independently distributed) chance variables
defined for all n by the following:

P{Zn=Wian1,“',Zn_1}=t? (i=0,1,"°,r+1)-

For all positive p and all positive integral n we define chance variables Z,, by
Zon = PZn + X5 . Write V(x| p) for the distribution function of Z,, . We have
immediately from (25) that

(26) 8(F(z | p), V(z|p) < 110

Let nyi(n), G = 0, 1, --- , r + 1) be the number of indices j for which Z; =
Wi,j =1,--+,n. From the strong law of large numbers it follows that, for
any positive € and n and for some N’(e, ) large enough,

* n ) = cee
P{|7i(n)_til<'2—0(r_‘— Il)’z_O’l’ T+ 1,
@27)

n=N',N'+1,---,adinf.}>1—.§.

Write F'y(x) for the convolution of fy *Fy (;_c)) with Fyo(zx). Let Hi(x | p, ny:i(n)),

i=20,1,---,7 4+ 1, be the empiric distribution function of those Z,;, j =
1, -+, n, for which the corresponding Z; equals W;;, j = 1, --- , n. (The
saltuses of H; are integral multiples of (ny:(n))™".) From (27), Lemma 2, and the
theorem of Glivenko-Cantelli we conclude that there exist N” (e, 1) and K(e, 1)
" such that the probability exceeds 1 — e that the following events will all occur
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for every n = N”(e, 1) and every p > K(e, n):

(28) |~/,~(n)—'tf|<2—0(;nrl—), §=0,1,+,7+1
(29) 5(Ho(x | p, nvo(n)), F3()) < == 06 + TCES))

and

(30) 8(Hi(z | p, myi(n)), Faolx — pds)) < T(')?_n—T-T) G=1,ee,m

(We get (29) from Lemma, 2, because F;(x) is continuous. We get (30) from the
Ghvenko-Cantelh theorem applied to Fy(z), because the role of the Wi, for
i=1, - ,r, is to supply an additive constant which merely translates the dis-
tribution functions.) When (28) holds we have from (25)

Fie|p) — 5 v | ) | < 2.
Also (29), (30), and (31) imply

Fuz|p) — Z yiln)Fa(x — pdi) — vo(n)Fy(z)
From (28) and (32) we obtain

Fie|p) = 38R — pd) — BFY) | < 21

(31) sup

32) sup

(33) sup
From (33) we obtain
(34) §(Fa(z | p), V(x| p) < 20-

Finally (26) and (34) yield
(35) 8(F(z | p), Falz|p) < n

This completes the proof of Lemma 3.

Proof of the Theorem. First suppose Fa(z) is continuous. For given » and e let
K(e/2, 1) and No(e/2, n) be functions for which Lemmas 2 and 3 hold for » and
¢/2. Choose H as in Lemma 1, and choose A > 0 sufficiently small so that
2M(AH) < /2. (The latter can be done when Fs(z) is continuous.) Define
[A7'K(e/2, 1)] as the smallest integer =A™'K(e/2, 7). Let Q; be defined by

(36) Q=K (5,,,) — @i - DA

Asin Lemma 1 choose N;, 7 =1, --- , [AT'K(¢/2, 1)], so large that
P{(F(z|p), Falx|p) <m|p — Q:i| <An=Ni;,N;+1,---,ad inf}

A

(37



THEOREM OF GLIVENKO-CANTELLI 137

(In the notation of Lemma 1, one can take N = N(e/2[K(¢/2, n)/ Al /2, Q)),

since (n/2) + 2M(AH) < 7). Let Ng = max {Ng},s =1, --- , [K(¢/2, n)/Al.
Therefore, for

(38) N* 2 miax {No(e/2, n), N5}

we have

(39) P{s(F(z|p), Falz|p) <m, —0 <p < o,
n=N*N*+1,.---,adinf.} > 1 — e

This proves the theorem when F,(x) is continuous.

To prove the theorem for the case when F(x) has discontinuities, proceed as
in Lemma 3. Except for a probability sufficiently small so that it can be ignored,
F(x) consists of a continuous part and a step-function with a finite number of
saltuses. We have already proved the theorem for the continuous portion. When
the X3,¢ = 1, --- , n, assume one of the values at which a saltus occurs, the
effect is simply to translate both the distribution function and the empiric dis-
tribution function. In this case the Glivenko-Cantelli theorem already gives the
desired result. Thus the theorem is proved when Fy(z) is discontinuous and our
proof is complete.

The underlying ideas of the above proof are the following:

A) When | p | is a large number and F:(z) is continuous the variables {X 21 play
a small role in determining 8(F(z | q), Fa(xr|q)) (Lemma 2). This is made
plausible by the following fact. Let J(z|¢) be the distribution function of
X!+ p'X?, and J¥%(z | g) be the empiric distribution function of {X} + p~'X7},
j=1,---,n Then

3(F(z|q), Faz| @) = 8(J (x| ), Jalz ]| 0).

B) The discontinuities in Fi(z) act essentially to displace the distributions
laterally and the distance is left invariant (Lemma 3, especially equation (30)).
Hence, when | p | is large, say greater than a suitable number L*, the variables
{X3] play a small role in determining 5(F(z | g), Fi(x| q)), whether or not
Fi(z) is continuous.

C) The theorem is true when p varies in a small interval (Lemma 1), essen-
tially because of the Glivenko-Cantelli theorem.

D) The theorem is therefore true in general, because the interval —L* < p <
L* can be subdivided into a finite number of small intervals, for each of which
C) holds, and the case | p | > L* is taken care of by B).

These considerations show that our theorem holds with essentially the same
proof under hypotheses much weaker than those we have stated. We shall con-
tent ourselves with indicating just a few possible generalizations:

, a) The chance variables {X}} (i fixed, j = 1, 2, -+, ad inf.) need not be
independent of each other. If, for example, for each %, {X}} is a metrically
transitive stationary sequence of chance variables, the Glivenko-Cantelli
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theorem will hold and so will our generalization of it. (As an example, see [4],!
equation (6.3).)

b) X} and X} need not be independent, provided the dependence does not
prevent B) and C) from holding. (As examples, see [2], Lemma 1, [4], equation
(5.11), and [4], equation (6.10).) *

¢) The chance variables may be vectors and need not be scalars. (As examples,
see [4], equations (5.11) and (6.10).)
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