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the sample size required to come to a terminal decision, but only certain aspects
of it (for example, its expected value), can be handled as above, using the proper
Win(x) at each stage.
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ON A CHARACTERISATION OF THE GAMMA DISTRIBUTION

By R. G. Lana

Indian Statistical Institute

An intrinsic property of the gamma distribution, as proved by Pitman [1], is
that if X;, X, - -+ , X, are n identically distributed independent gamma, variates
with the distribution function

— 1 —X vy P2
dF(X)—Wp—)eX dX 0=X<x< »)
then the sum X; + X, + -+ + X, is distributed independently of any function
9(X1, Xy -+-, X) SatiSfymg g(X1’ Xoy ooy Xa) = g0 Xy, MNXy, -+, NX,)
for any nonzero real . That is, g(X;, X», - -+, X,) should be a function inde-
pendent of scale. In the present paper the converse theorem is proved for a
particular class of g-function.

TaEOREM. Let X, , X2, - -+ , X, be n identically distributed independent random
variables with a finite second moment. If the conditional expectation of the ratio of
two quadratic forms (O_a:;X:X;)/(O_X.)’, (where the elements of the matriz (a:;)
satisfy the relation Y_a;; # Zai,-/n) for fixed sum X3 + Xy + - -+ + X, be equal
to its unconditional expectation, then each X follows the gamma distribution.

For a matrix A = (as;) where the relation D a,; = D _a;;/n holds, the method
suggested does not lead to any solution of the problem. It is also interesting to
note in this connection that the stronger assumption of stochastic independence
of the sum X; + X; + --- + X, and ¢(X,, X,, -+ X,) is not necessary for
this particular class of g-function.

The following lemma is required for the proof of the Theorem.

LemMA. If u and v are two random variables such that for fixed v, the conditional
expectation of u/f(v), where f(v) is a function of v, is equal to its unconditional ex-
pectation (provided it exists), then

» E(ue™) = E{u/f()}-E{f()e™} .
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The proof of this lemma is very simple. If z and 7 are two variates such that
the conditional expectation of y for fixed x is equal to its unconditional expecta-
tion, then E.(y) = E(y). Multiplying both sides by ¢(z) e and taking expecta-
tion with respect to z, we get very easily

E{yo(a)e™} = E@)-Elo(z) ¢™).
Putting y = w/f(v), ¢(x) = f(v), x = v, this becomes
E{(u/f0)f@)e"} = E{u/f(v)}-E{f(v)e™}.
To prove the lemma, this may be written as
E{ue™} = E{u/f()}-E{f(w)e™}.

Proo¥ oF THEOREM. Using this lemma with u = 37a;;X.X,;, » =2 X,,and
Jo) = (X)),

B{(XaiX X j)eiCrtrat +x)
= E{(EauXtX,)/(ZX,f} ‘E{(EX;)2-e“(x1+"‘+xn)}.

Let o(t) = E(e**) represent the characteristic function of the distribution of X.
After some algebraic simplifications, (1) will reduce to

(Sod - 82 (T - () o

@
d2 n— d(o ? n—2
—K{ dtf 1+"'«(”'«"'1)?<¢-{t—) R4 },

where K = E {(O_a:;X:X;)/(_X.)"}. Then, we have

X ai) - < iF / ¢>+ (é aij) - ({dft—o / ¢>2
=K{n~<g;/)+n(n—l) (d«, f’)}'

Writing ¥(t) = In (), we have
2 2
e/, By Lo/ (%))

1)

@)

dt dt e de dt
Substitdting these in (3), we obtain the following differential equation for y(¢),
@ varn@ -0 BIENTR
together with the initial conditions
Wl d'y ‘
dt |e=o i ae
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Here m and o® are respectively the mean and variance of the distribution of X.
In the solution of this differential equation (4), three cases must be distinguished.

I. A#0, B0

11, A%0, B=0;

II1. 4=0, B0

For Case I, the differential equation may be written as

2 2 2
® #-c @, c--i-%
using the initial condition in (4). Writing £(f) = dy/dt equation (5) reduces to
©) a <—1—> -7
dt \£(t) m?

Integrating this differential equation (6) with respect to ¢, using the initial con-
dition £(0) = im, we get
' gty m m” 1 — (o¥/m)it
From (7), with the initial condition ¥(0) = 0, we get very easily
8) ¥t) = —(m"/d)logll — (*/myidl, or  o(t) = [1 = ("/myat]” ™.

By applying the inversion theorem, it can be very easily shown that the charac-
teristic function ¢(¢) in (8) leads uniquely to the gamma distribution with param-
eters o = m/o" and 8 = m*/d’, the frequency function being given by

1/T@) e *x** X > 0} m > 0;
©) g § § g m < 0.
[/T(B))(—a)’e**(—X)* X <0

For cases II and III, it follows from the conditions stated in the theorem that

(10) E {Eaej X.'X;‘} - o2 + m 2y
Cox)? no? + nPm?
Thus the condition B = 0 yields the relation
. Zau _ _ Za,-,- X: X i\ 0'220.'; -+ mzza;,-
(11) = =K =E xS e e

On simplification, this reduces to > _a: = >_a:;/n. Similarly, in Case III, the
condition 4 = 0 obviously leads to the relation
(12) Lo _ g 2ot moey

n

ne? + nPm?

K
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On simplification, this also reduces to >_a:; = > _a.;/n, the same as obtained from
the condition B = 0. Thus an important conclusion is reached that whenever
the matrix A = (a;) is such that its elements satisfy the relation Y _a:; = X a:j/n
both the coefficients A and B of the differential equation (4) vanish simultane-
ously, thus leading to no solution of the problem.

Since cases IT and III are excluded by our assumption Zaii = Za;,-/n, the
problem leads uniquely to the solution obtained in (9). Obviously when the
matrix A = (ai;) is either positive definite or negative definite, the relation
D as # 2.as;/n is always satisfied. Thus the equality >ai = 2_a:j/n may hold
only for some indefinite matrices.

CoROLLARY. Let X1,X,, -+ , X, be identically distributed independent random
variables with a finite second moment. If the ratio of the linear functions of random
variables given by (e X1 + -+ + a.X,)/ (X1 + -+ + X,) is distributed inde-
pendently of the sum X, + Xz + - -+ + X, then each X will follow a gamma dis-
tribution.

Proor. From the statement above, it follows that the conditional expectation
of (@X: + -+ + a X))/ (X1 + -+ + X,)* for the fixed sum X; + - -+ + X,
is equal to its unconditional expectation. Here the elements of the matrix 4 are
given by a;; = a.a; for¢,j = 1,2, --- , n and they always satisfy the Schwartz’s
inequality > a3 > (3-a:)?/n, excluding the trivial case > a7 = (2"a:)*/n which is
possible when and only when all a/’s are equal, thus reducing the ratio of the
linear functions to a constant. Hence the relation Y a;; # D a:;/n is always
satisfied and the proof follows at once.
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MATCHING IN PAIRED COMPARISONS

By J. L. Hopges, Jr. AND E. L. LEEMANN?
University of California, Berkeley

1. One of the simplest designs for testing the effect of a treatment is the
method of paired comparisons: 2n subjects are divided into n pairs, and within
each pair the treatment is assigned at random to one of the two subjects while
the other is used as a control. This method has the reputation of being most
effective if the subjects within each pair are as closely matched as possible.
We shall show below that while this is true in the situations occurring most
commonly in practice, it is not correct universally.
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