IDENTIFICATION AND ESTIMATION OF LINEAR
MANIFOLDS IN n-DIMENSIONS!

By T. A. JEEVES
University of California, Berkeley

1. Summary. This paper investigates the problem of identifiability and estima-
bility of linear structures in n dimensions. The concept of identifiability is
examined to elucidate the senses in which it may be interpreted in the present
problem. Particular attention is given to the question of treating linear subspaces
rather than specific coordinate systems. Necessary and sufficient conditions for
identifiability are obtained under the assumption that the ‘‘errors” follow a
multinormal distribution. *

2. Introduction. In many fields of statistical application it is not possible to
observe directly the variables of interest but only to observe related random
variables. Let X = (X;, X2, ---, X,) be a random (row) vector which is “un-
observable” and ¥ = (Y, Y., ---, Y,) be a random (row) vector which is
“observable.” Assume that ¥ = XB 4 U, where B is a parameter having n X n
matrices of sure numbers for values and U = (U,, U, -+, U,) is a random
(row) vector which is stochastically independent of X.

In this paper particular attention will be given to the case in which U has a
multinormal distribution, and it is desired to determine the row space S of the
value of B. Two problems are considered : (a) identifiability, whether S is deter-
mined if the distribution of Y is known [1], [2], and (b) estimability, whether S
can be estimated consistently [1] from an infinite sequence of observations on Y.

Similar problems were considered in 1901 by Pearson [3]. As early as 1916,
Thomson [4] showed that estimates based on moments no higher than the second
would not be consistent. In 1936, Neyman [5] indicated a set of conditions in
which, because of nonidentifiability, no consistent estimates existed. A summary
of the state of the problem in 1940 was given by Wald [6], who brought an en-
tirely new approach. An answer for the case of two dimensions was supplied by
Reiersgl [7] in 1948.

3. Identifiability. The problem of identification in n dimensions introduces
features not present in the two dimensional problem. In particular, just what
is to be idéntified and hence estimated must be clarified. In » dimensions a
greater variety of possible interpretations is available. To elucidate the sense
in which the problem is treated here, and to bring out the relationships to other
work, it seems necessary and profitable to begin with some general remarks on
identification, culminating in the definition of identifiability (Definition 3)
utilized in the remainder of the paper.
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Following Neyman [1], the concept of identifiability is defined in the following
way. Let L be a relation L(3, F) between the elements ¢ of a space © and the
elements F of a set @ of distribution functions. Let w(@) = {F | L@@, F)}. Let
6 be a parameter with range 6, C ©.

DzriniTION 1. 6 is identifiable (L) if the sets w(#) are d1s10mt for every & € O, .

This definition generalizes that of Neyman, in that © and O, are not neces-
sarily identical. The definition emphasizes the relation L between elements of ©
and elements of Q. Essentially the definition states that identifiability obtains
if no two distinet elements of O, are related to the same distribution function.
However, for the succeeding discussion, it is important to notice that this defini-
tion implies the existence of a relation among the-elements of the larger space 0,
and that this relation characterizes the nature of the identification. The following
theorem, which follows easily from the definition, brings out this point. The
following notation is introduced: for any F £Q,

v(F) =80 |Feu@®}, T@= U y@F), @= U o).

Few(d) 960,

TuarorEM 1. 6 75 identifiable (L) if and only if there is a relation R between
the elements of © such that for every & € O, and every 3* ¢ T'(¥),

(i) R(3, 9*) holds, and

(ii) R(3*, &) holds only if 8* = 9.

The relation R is uniquely defined by the relation, L for any ¢ e,
and #* ¢ T'(9); conversely, specifying R implies restrictions on L.

From this it is seen that if 6 is identifiable (L) then there is a one-to-one corre-
spondence for ¢ ¢ O, between ¢ and w(#), and also between & and I'(#). Further,
every F ¢ Q, determines a unique value of # and there exists a function I with
the domain Q, and range O, such that if F £Q,, then F ¢ w(I(F)). If 6 = ©O,,
then the relation R is equality. In the following, particular attention will be
given to the case in which the ¢ are linear spaces and R is the relation of inclusion.

To apply the definition to the problem considered, it is necessary to exhibit
the relation L. Let M be the set of n x n matrices and O a family of subsets of M.
Let @ be the set of n-dimensional distribution functions and &, U, and Y be
nonempty subsets of Q associated with the random variables X, U, and Y, re-
spectively. Let Fx, Fy, and Fy be the distribution functions of the random
variables X, U, and Y, respectively.

Derinizion 2. For any sets &, U, and O, the relation L(#, Fy) holds if B ¢¢
and if ¥ = XB 4 U for some X and U such that Fx ¢ X and Fy ¢ U.

It has been shown [8] that conditions must be imposed on both & and a if 6
is to be identifiable (L).

Further analysis of the problem requires consideration of the effect on the
matrix B of a nonsingular transformation P. Identification problems may be
proposed in which the space ©; is so specialized that PB no longer belongs to an
element of ©,, or may not for certain P. Such problems will not be considered
in this paper. It will be assumed that 6, has the following property: for any non-
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singular n X n matrix P, if Bed ¢ 0,, then PB £d* for some ¢* ¢ ©,. Con-
sidering the definition of L above it follows that:

THEOREM 2. In any sets ©, 6, , X, and U such that ©, ¢ © and O, has the above
property, if 0 is identifiable (L) then for each nonsingular matriz P either

(a) Fx & X implies Fxp not a member of X for every X, or

(b) Bed implies P"'Bed for every o ¢ ©,.

The content of this theorem indicates two broad categories of problems, those
in which condition (a) is satisfied by all nonsingular matrices and those in which
condition (b) is satisfied by all nonsingular matrices. Mixed problems in which
some matrices P satisfy (a) and some (b) might also be considered. The assump-
tion that condition (a) is satisfied for every P leads to the consideration de-
veloped by Koopmans [2], [9].

This paper explores the implications of assuming that condition (b) is satisfied
for all P, thatis, that the matrices belonging to# are all row equivalent or have the
same row space. It will thus be convenient to think of ¢ as a row space. With this
interpretation the problem being considered below is that of identifying the row
space of the matrix B. The row space is a natural parameter in the problem of
general linear structures. As such problems frequently arise, the components of
X are presumed to lie in a linear subspace of Euclidean n-space; the determination
of this linear subspace is desired. The specification of a particular set of co-
ordinates on this subspace (that is, the determination of B) is frequently not
required.

Throughout the remainder of this paper it will be assumed that the elements of
O, are the sets of row-equivalent matrices corresponding to the various row
spaces of dimension s and that 6 =16, . It will also be assumed that U is the
set of multinormal distributions. Since & is not specified, the relation L is not
completely determined. Instead of specifying the set X, it will suffice to select
the relation R (see Theorem 1) and investigate what conditions on & are neces-
sary and sufficient for identifiability. Two natural relations among linear spaces
are the relation of equality and the relation of inclusion. The treatment here will
be confined to the relation of inclusion. Similar results for the relation of equality
have been obtained [8].

In view of the preceding considerations, the definition of identifiability may be
particularized for the relation of inclusion as follows:

DEFINITION 3. 8 is identifiable (L*) if 8$(8) C $(*) for every ¢ € O, and 9* £ T'(d).

Here 8() denotes the row space of ¢, that is, the vector space spanned by the
row vectors of any element of ¢, while L* denotes a relation L which gives rise
to the relation R of inclusion (see Theorem 1). Here R(J, 9*) means $(@) C 8$(3*).

4. Necessary and sufficient conditions. As in the case of two dimensions [7],
identifiability is related to a lack of normality in the random variable X. This
concept of the amount of nonnormality of a random variable is defined below.

DEeriNiTION 4. The dimension of a random variable U is the smallest dimension
of all linear subspaces which contain U with probability one.
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DermNiTioN 5. Let nn(Y) be the least value of d such that ¥ = U 4+ V with
U and V independent, V having a multinormal distribution and U having dimen-
sion d. This value nn(Y) will be called the nonnormality of Y.

DEeFinitioN 6. The nonnormality of ¢ is s (i.e., nn(Yy) = s) if nn(Y) = s for
every Y such that Fyey.

In terms of the definition of nonnormality, the main result on identifiability
of linear manifolds in n-dimensions can be stated as follows.

THEOREM 3. 8 s identifiable (L*) if and only if nn(yY) = s.

The proof of the theorem depends on the following lemmas, the proofs of
which are straightforward [8] and will not be given.

LemMma 1. If M is an n x n matriz with rank s and if (n — s) columns of M are
identically zero, then every row either belongs to some s x s submairix with rank s,
or else is identically zero. .

Lemma 2. If A is a symmetric matriz, E is a diagonal matriz with ones and
zeros on the main diagonal, and EAE is positive semidefinite, then there exist matrices
C, G, and H such that

CAC' = DGD + EHE,

where D + E = I (the identity) and H is a diagonal matriz with ones and zeros
on the main diagonal, C s nonsingular, and CD = D.

The following choice of notation has been made. The symbol f(¢) will be used
to denote some polynomial of the second degree in ¢, but not necessarily the same
polynomial at each usage. Distinet polynomials will not generally be distin-
guished. The characteristic function of a random variable X will be denoted by

ex(t) = f ¢ dFx(z), where t and z are row vectors. Further,yx(t) = —logex(t)

LemMA 3. If Y (t) = ¢x(tB’) + ¢u(t), and of U has a multtnormal distribution,
then for any matriz C which is idempotent and row-equivalent to B,

¥r(t) = ¥r(tC") + f0).

In particular C may be the canonical form of B.

DerinitioN 7. The canonical form of the matrix B is a matrix C which is row
equivalent to B, with elements satisfying, for each 7 = 1, --- , n,

(@) cc = 0 or c¢iu = 1;

(b) if ¢;; = 0, then ¢;; = 0 for all j and ¢j;; = 0 for j = ¢;

(c) if ;s = 1, then ¢;; = 0 forj < 7 and ¢;; = 0 for j = <.

Lemma 2 can be used to prove '

LemuMa 4. If oy(t) = ¢r(tB’) + f(t), then ¥x(t) = ¢¥¥(tF') + ¢ — F)'),
where

(i) F s idempotent and row-equivalent to B

(ii) exp { —y¢v[t(I — F)'1} is the characteristic function of a multinormal random
variable.

From the preceding lemma and the definition of nonnormality one
easily obtains



718 T. A. JEEVES

Lemma 5. nu(Y) = s if and only if s s the minimum rank of all matrices A
such that

vr(t) = ‘/’Y(tA,) + f(t)

Lemma 5 hence furnishes an alternate definition of nonnormality. '
Proor or THEOREM 3. If B £ 9, then (B) = s. Let Y be any random variable
such that L*@, Fy), and let ¢ = nn(Y). Then

® Y =XB + U.
(a) From the relation L*, it follows that
2) ¥r(t) = ¥x(tB’) + ¥u(t).

Hence by Lemma 3, ¢y(f) = yy({C") + f(t), where C is idempotent and row-
equivalent to B. Therefore, by Lemma 5, t < s.

(b) Assume 6 is identifiable (L*). By Lemma 5 there exists a matrix 4 of rank
¢ such that ¢y(t) = ¢r(tA’) + f(¢). Hence there exists a matrix F having the
properties enumerated in Lemma 4. But from (2) above, it follows that

¥r(tF') = yx(t(BF)') + Yu(tF").

Therefore, letting B* = BF and U* = UF + Y(I — F), one obtains that X
and U* are independent and U* has a multinormal distribution. Further,

Y = XB* + U*,

so that L*@* Fy) holds, where ¢* is the set having B* as an element. Now
7(B*) = r(F) = t. But since 0 is identifiable, $(3) C $(3*) so that r(B) < r(B*).
Whence s < ¢, and part (a) then implies s = ¢ that is, the condition
of the theorem is necessary.

(¢) Assume 6 is not identifiable. In view of part (a) it is required to show that
t < s. By hypothesis, there exist random variables X* and U* and a matrix
B* e 9*, such that L*@* Fy),

3) Y = X*B* 4+ U*
and 8$(8) ¢ $(*). Equations (1) and (3) and Lemma 3 imply
(4) ¥r(t) = ¢r(tC") + fit) = ¢x(tC¥) + £o(2),

where C and C* are idempotent and respectively row-equivalent to B and B*
and have s and s* rows which are not identically zero. There exists a nonsingular
transformation P which reduces C* to a diagonal matrix D* = C*P having only
ones and zeros on its main diagonal. Let A = CP, then (4) yields

Yr(tA’) = ¥y(D*) + f(t),  ¥x(D*A’) = ¢y(tD*) + f(t),
®) Yr(tA’) = ¢y (ID*A") + f(1).

Equation (5) will be analyzed in three cases.
¥
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Case I, r(D*A’) < s.Let G’ = P"'D*A’. Then r(G) < s, and

Yr(tC') = ¥r (@) + f(0).

This, together with equation (4) and Lemma 5, implies ¢ < 7(G), so that ¢ < s.
Caskg I1, r(D*A’) = s, and there exists a diagonal matrix D having only ones
and zeros on the main diagonal such that

r(D) = s, r(DA') = s, r(DD*) < s.
Substitution of ¢ = ¢D for ¢ in (5) gives
Yy(eDA’) = yy(eDD*A’) + f(0).

The vector r = ¢DA’ has exactly s components which are not identically zero.
Since r(DA’) = s, there exists a matrix « such that7(a) = sand ¢ = 7. Hence

¥r(7) = ¥r(raDD*A’) + f(7).
Since A’ has the same nonvanishing components as 7,
Yy(tC") = ¢y(tH') + f(t)

where H' = P 'A’aDD*A’. This, together with equation (4) and Lemma 5,
implies ¢ < r(H), and since 7(G) £ r(DD*) < s, it follows ¢ < s.

Cask III, r(D*4’) = s, and for every diagonal matrix D having ones and
zeros on the main diagonal, r(DD*) = s whenever (D) = s and r(DA’) = s.
Let a;; forj = 1, - -+ , m be the row vectors of A’ which are not identically zero.
Then by Lemma 1 each row a;; is included in some s-rowed minor of A’ of rank s.
That is, there exists a diagonal matrix D; such that r(D;4’) = s and 7(D;) = s

with elements d;;i; = 1 forj = 1, ---, m. Since r(D;D*) = s, by hypothesis,
then df;;; = 1forj = 1, ---, m. Hence, it follows that AD* = A. Since D* is

idempotent, then $*(4) < $*(D*). Here the notation $*(A) denotes the space
spanned by the row vectors of A. It then follows that §*(C) < $*(C*), and hence
$(@®) < 8(9*), contradicting the hypothesis that 6 is not identifiable (L*). Case
III is therefore impossible.

This completes the proof of sufficiency for Theorem 3, as these three cases
exhaust the possible situations arising from (5). The corollaries below are easy
consequences of Theorem 3.

CoROLLARY 1. Denoting XB by S, 6 is not identifiable (L*) if and only <f
S = ZG + V, where Z and V are independent, V has a multinormal distribution,
and r(@) < r(B).

CoroLrarY 2. If X = ZG + V and r(G) < r(B), then 6 is not identifiable
(L*).

CoRroLLARY 3. If 0 s identifiable (L*), then the nonnormality of X s not less
than s.

The expression of Theorem 3 in terms of the random variables X is more
natural if the problem is reformulated in an equivalent way [8]. Let Y, denote
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a vector with n components and B,, a matrix with s rows and n columns, s < n.
Let ¢, denote a set of s-dimensional distribution functions.

TEEOREM 4. When the relation L** s characterized by the equation
Y. = XBsw + U, with r(B,s) = s, then 0 is identifiable (L**) if and only
if nn(X,) = s.

Taking n = 2 and s = 1, one obtains the result of Reiersgl [7]. Exactly similar
results are obtained if the relation R is taken to be equality rather than inclu-
sion. Again, if ©, were chosen as the set where elements are all the sets of row-
equivalent matrices, so that ©, = O, then one would have:

THEOREM 5. 0 s identifiable (L*) if no linear combination of the components of
X 1s normally dustributed.

6. Estimation of linear structures. In this section, an estimate is constructed
which converges with probability one to the linear structure. An infinite sequence
of vector random variables (Y;, Y3, - -+ ) is considered. No assumption what-
ever is made concerning the existence of moments of Y;. Each Y; satisfies
definitions 2 and 3; furthermore, Y, and Y'; are independent if ¢ > j. It is assumed
that s is known. For every N, let Zy = (Y1, -+, Yy). A function Tx(Zx) will
be constructed such that P{Tx(Zy) — $(B) as N — o} = 1, where Ty is a
linear vector space and the convergence T'x(Zy) — $(B) is defined in

DeriniTioN 8. If Cx and C are linear vector spaces, then Cx — C as N — =,
provided Ay — 0 as N — oo, where Ay = max; min, [k — 7| for all unit vectors
k in Cy, and all unit vectors r in C. The quantity Ay will be called the distance
between the sets Cy and C.

Hence if Cx and C are linear vector spaces and Cy a random variable, then
Cx converges almost surely to C'if P{Ay — 0} = 1. A unit vector is here a vector
of length one.

DEFINITION 9. A matrix B is related to a random variable Y if B ¢ for some
& such that ¢ £ 6, and ¢ £ y(F) (cf. Definition 1).

From part (¢) of Theorem 3 one obtains:

LemMa 6. If ¥(t) = ¢r(C%) + fit) for i = 1, 2, where C; is idempotent
with rank S; , then

(i) esther nn(Y) < s, or else $(C1) < $(C,), and

(i) esther nn(Y) < s; or else $(C2) < $(Cy).

Lemma 7. If 0 is identifiable (L*), if B is related to Y, and if G is idempotent,
then ¢y(t) = ¢ (G) + ) if and only if $(B) < $(C).

Proor. Suppose $(B) C $(G@) and C is an idempotent matrix row-equivalent
to B. Then ¢y(f) = ¢»(C") + f@t), and r(C) = nn(Y). Since CG = C, then
Yr(t@) = ¢y (C") + f(t) and ¥+ () = ¥ ((G") + f(2).

Conversely, suppose ¥y(f) = ¢y(G@) + f(t). Then, since nn(Y) = r(C),
Lemma 6 implies $(C) C $(G).

Lemmas 4 and 7 imply

LemMA 8. If 0 is identifiable (L*) and B 1is related to Y, then, for any idempotent
G such that $(B) < S8(Q), there exists F idempotent and row-equivalent to G such
thatyy(t) = ¢v(tF') + ¢yt — F)'), and Y(I — F) has a multinomial distribution.
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LemMma 9. If F is idempotent with rank n — 1, then F = I — r'a/ra’ for unique
row vectors r and a.

From Lemmas 8 and 9, it follows that ¢y(t) = ¥y(tF’) 4+ 3¢’(ta’)’ if and only
if 8(B) < 8(F), where F is chosen as in Lemma 9. This property is made the
basis of a criterion to determine $(B). Letting

L) = L(t; a,r, a) = ¢y(t) = gay(tIf")a"“"')2 where o = exp[—1c7],

it follows that L(t) =, 0 if and only if $(B) C $(F) and « is suitably chosen.
Define G(r) = min, f L{)L(—t) d\(t), where \(¢) is a strictly increasing bounded

function and the integration is taken over the entire space. Then G(r) = 0 if
and only if r is orthogonal to $(B). Thus if #y were known, an investigation
of the zeros of G(r) would yield explicit knowledge of $(B).

Determining a random variable which converges almost surely to G will
enable the desired estimate to be constructed. To this end the sample character-
istic function is defined by

N
onlt; Zx) = 3 2 e,
Nio

Then Gy(r; Zy) is defined by replacing ¢y(t) by ex(f; Zx) in the definition of
G(r). The space C is complementary to S = $(B), that is the space spanned by
the unit vectors r for which G(r) = 0.

The estimate Tx(Zy) is defined to be the linear space orthogonal to the linear
vector space Cy spanned by the vectors k;, ks, - -+, kn—s . The vectors k; are
defined by the following construction.

(i) k; is any unit vector for which Gx(ky ; Zx) = min, Gu(r; Zx).

@) forj = 2,---,n — s, k;is any unit vector such that Gn(k;; Zx) =
min,.o; Gn(r; Zy), where O; is the linear space orthogonal to &y, - -, k1.

The proof that the estimate converges almost surely is based on the following
lemma which is a corollary of a theorem of Rubin [10].

LeMMma 10. For any finite cell T of Euclidean n-dimensional space,

P{lim on(t; Zy) = or(t) uniformly for teT} = 1.
N—oo

Taking F as in Lemma 9 and since o is bounded for a & [0, 1] and u real,

then
P{lim Ly(f) = L({) uniformly for te¢T and 7, a,a} = 1.
N—»o0

Here Ly(t) is defined by replacing ¢y(t) by ¢x({; Zx) in the definition of L(¢).
From this, since r, @, « are on compact sets, it follows that

LemMma 11. P{limyo., Gy(r; Zy) = G(r) uniformly in r} = 1.

LemMma 12. If Ay is the distance between Cy and C, then P{Ay —0asN — ©} =
1, provided 0 is identifiable.
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Proor. For any 7 > 0, let C, be the set of unit vectors k such that
min,.c |k — 7| < 7, where r is a unit vector. For any 5 > 0, take

T =qn /7 ¢ = min G(r) with » not a member of C, e < £/2.

Then, there exists N, such that for every rand all N > N, , | Gv(r; Zx) — G(7) |
< e with probability one and, hence, both

min Gy(r; Zy) with r notamemberof C, = £ — e > £/2
min Gy (r; Zy) with r not a member of C, < e <£/2.

Therefore, if k satisfies min, Gy(r; Zy) = Guy(k; Zy), it follows that ke C, ,
and hence k; ¢ C, .

It can be shown similarly that, if n — s = 2, then k, ¢ C, , since in this case
there must be a unit vector r such that r ¢ k and r ¢ C. Likewise it can be shown
by induction that k;e Cforj =1, -+ ,n — s.

Let k be any unit vector in Cy . Then k = ) _ /' d;k; and kk’ = 1 implies
2.’ di = 1. Since k; € C, there are vectors r; & C such that |k; — r;| < 7 for
j=1,+-+,n—s Then

n—s§

lk“4|<f_z=;[dj|§7\/n—s<n.

Hence, for any 5 there exists N, such that Cy < C,, provided N > N,, and
therefore Ay < 5 with probability one.

The following lemma is straightforward.

Lemma 13. Cx converges to C if and only if Sy converges to S, where Cy and
C are the complemenis of Sy and S, respectively.

Lemmas 12 and 13 then imply

THEOREM 6. If 0 is identifiable (L*), then the esttmate Twn(Zy) converges almost
surely to $(B).
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