ON A CONTAGIOUS DISTRIBUTION
By R. S. G. RUTHERFORD

University of Sydney, Australia

1. Summary. The purpose of this paper is to discuss the probability distribu-
tion that arises when the probability of success at any trial depends linearly upon
the number of previous successes. Such a scheme has obvious uses in both bio-
logical and economic fields.

It will be shown that by assuming a simple linear relationship between the
number of previous successes and the probability of success in the next trial, we
can derive a distribution that is reasonably easy to handle, provides as good a
fit as more usual distributions, and has parameters which are capable of easy
physical interpretation. Moreover, for appropriate values of the parameters the
negative binomial and the Gram-Charlier systems can be shown to be close
approximations.

2. Introduction. Considerable attention has recently been directed to models
where previous experience determines the probabilities in the forthcoming trial.
This study is particularly indebted to the work of Woodbury [1]. Much of the
recent work has developed the probability scheme originally postulated by Polya
[2]. Here it is intended to extend that suggested by Woodbury, and it may be
well to contrast the two schemes. :

In the Polya scheme, we have an urn containing b black and w white balls.
After each random drawing, the drawn ball is returned together with ¢ balls of
the same colour. Thus the chance of drawing a ball of given colour depends upon
both the number of previous successes and of previous failures.

The Woodbury scheme involves the return of the drawn ball only, if the draw
be a failure, and in the event of the draw being a success, the reconstitution of
the urn, for example, by the replacement of “failure” balls by “success” balls.
In this scheme the order of success is important; in the Polya scheme it is not.

Formally the Woodbury scheme involves that if P(n, z) be the probability of
exactly = successes in 7 trials, and p. be the probability of success after x previous
successes, then

(1) P(n + 17 x + 1) = sz("’) x) + (1z+1P(n, x + 1)

Woodbury has solved this problem in the general case.
In this article we postulate further that p, is a simple linear function of z, viz:

() p: = p + cx, 0=z = n.
Since we must have 0 < p < 1, we have the limiting conditions,
3) c >0, n < q/c; ¢ <0, n<p/lc].
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704 R. 8. G. RUTHERFORD

This involves that ¢ must always be of order n™" or smaller. These conditions do
not prove very restrictive.

3. The distribution and its properties. Following Woodbury, the solution of
(1) and (2) may be shown to be

o T |
(f) (g — er)™

The summation term is clearly the coefficient of 8"/n!in e®(1 — ¢ )"

It is desirable to consider the effect of the restrictions of the conditions (2)
and (3) upon the value of P(n, z). It will be shown now (a) that P(n, x) is zero
for z > n, and (b) that P(n, z) is always positive for 0 < z < n.

(a) Sincetheterm (1 — ¢ )® if writtenas (c — c¢’6°/2! + - - -)* contains only
terms of order §° and higher powers of 6, the summation term is zero for all
Tz >n.

(b) The condition that P(n, x) as given by relation (4) is always positive
within the range < n requires that with ¢ > 0 (i.e., with the product term al-
ways positive) the summation term should always be positive, while with ¢ < 0
(i.e., with the product term alternately positive and negative) the summation
should also alternate in sign, being positive when z is even and negative when
z odd. Regarding the summation as the leading xth difference of the series ¢",
(g —c¢)" -+, (g — nc)", shows immediately that (3) is a necessary and sufficient
guarantee for the summation term to have the correct sign.

The generating function of P(n, z) is the coefficient of 6"/n! in
¢”[1 — (1 — )] ?'° which may be written

(5) 11 — t)e” + 177"

Though this expression has an infinite number of terms, the terms containing 6~
will occur only in the n + 1 terms containing powers of ¢ from 1 to ¢". Thus the
generating function is a finite one. That the sum of all the P(n, z) forz = 0 -
is equal to 1 may be confirmed by putting ¢ = 1 in (5) and considering the co-
efficient of 0"/n! in €. This gives us, for the factorial moment generating func-
tion, the coefficient of 6"/n!in
(6) Al — a(e” — )77
Denoting the rth factorial moment by f, , we have then

fi= @/l + ¢)" = 1],
() fo = (/c)®/c + DIA + 2¢)" — 2(1 + ¢)" + 1],

fs = @/c)(p/c + 1(@/c + 2)[(1 + 3¢)" — 3(1 + 2¢)* + 3(1 + )" — 1].

(4)

, 4 Empiric fitting. For empiric fitting these three moments (7) should be
enough to determine the three parameters n, p, and c. Since the present writer
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has been unable to derive a method of fitting on maximum likelihood principles,
a somewhat cumbersome method of solution is offered. We may write (7) in the
form

p =_._f1_.._ = o f,
c QA+ —1 1
P _fz (1+C)n'—1 _ f2
E+1"f,(1+2c)n—2(1+c)n+1 e
PyLog_ts (142)" =201 + 0" + 1 0
¢ f2A+3)" =30 +20"+30 F+o)"—1 °fi"

To obtain an estimate of » we can approximate these further as
np =[1 — (n — 1)c/2)f1,

(n—1)(@+c)=I[1— (n—3)/2fe/f1,
(n —2)(p + 2¢) = [1 — (n — 5)c/21f3/f: .

From these relations p and ¢ may readily be eliminated, giving a cubic for n.
In this cubic, n = 1is always a root, and the relation may be reduced to a quad-
ratic, of which the positive root is the only relevant one. Since n must be integral,
the nearest integer may be taken as a trial value. Having obtained n, it is easy
to evaluate p and ¢. The terms of the distribution are very sensitive to small
changes in p and ¢, which should be evaluated carefully.

It is intended to develop tables of the values of the expressions a; , as, and a3
which will make the fitting less arduous, and more reliable for ranges in which
the above approximations are not valid.

6. Comparisons. The results of fitting this distribution to two classical sets of
data are given in Tables I and II. In both cases, the fit of the present distribution
is at least as good as in the standard fittings. The improvement is not remarkable,
but the parameters of the distribution have a clear physical meaning which can
never be claimed for the parameters of the negative binomial or the Neyman
contagious set [5]. That is the major claim made for this work.

It is intended now to investigate why other distributions appear to be close
approximations in certain circumstances. It is important, however, to make
plain the purpose of the following sections. There is no intention to discuss the

TABLE I
Accidents to women working on H.E. shells, data of Greenwood and Yule [3]
n==6 p = 059886 = (.103036
Number of accidents ..................ooooiiii 0 1 l 2 3 4 5 l Tot.
Observed frequency................| 447 132 42 21 3 2 647
Negative binomial . ................. 442 140 45 14 5. 2 648
Neyman contagious distribution.. ... 448 128 49 16 5 1 647
Present distribution................. 447 130 47 17 5 1 647
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TABLE II
Yeast cells in 400 squares of a haemcytometer, data of “Student’ (4]
n =13 p = .046747 ¢ = 0.019088

Numberof yeast cells ..............ccovvvnnn.n. ' 0 ' 1 I 2 l 3 | 4 5 Tot.
Observed frequency................[ 213 128 37 18 3 1 400
Negative binomial . ................. 214 123 45 13 4 1 400
Present distribution................. 215 122 45 14 3 1 400
Gram-Charlier Type B.............| 216 119 46 15 3 1 400

minutae of the conditions under which the approximations will be valid. Such
conditions may be found by anyone sufficiently interested.

The purpose in this context is merely to explain why certain distributions have
provided reasonably good fits to empiric data which may have, in fact, been gen-
erated by a system of the type of (1). A second, and perhaps subsidiary, point is
that the fitting of the distribution is difficult, particularly as no maximum likeli-
hood method seems available. This may be overcome in certain ranges by fitting
these other distributions, where the parameters are easier to determine, if these
parameters can be interpreted in terms of those of the present distribution.

To illustrate and confirm the following sections, a number of actual distribu-
tions have been evaluated, together with the approximations under discussion.
These are given in Section 8.

6. Binomial approximations. In the negative binomial generated by
@®) (1 + P) — Py,
we have, by standard methods
9) fi=kP, fi=kk+ DP’, fi = kk+ 1)E + 2)P.
By the method of moments we can then determine the parameters as

(10) k=f/f=7), P=~Dh.

Comparing (9) with (7) shows a considerable similarity of form, if we assume
that ¢ and hence p/c are positive. If ¢ and » be small enough for us to equate
(1 + 2¢)"and (1 + ¢)*, we will have at once

(11) k= op/e, P=©0+4+¢" — 1.

The necessary conditions for this to be valid are somewhat complicated but in-
volve that terms in n’c’ may be neglected and/or that p/c < n — 1. In practice
the first of these is rarely likely to be obtained. However, it can still be demon-
strated, by some rather cumbersome analysis not shown here, that solong as p/c <
n — 1 a negative binomial can be fitted, though the parameters no longer bear
easy interpretation in terms of those of the original distribution.

A positive binomial generated by, say, (Q' + P’t)*’ might provide a good fit
if cds either negative or positive with p/c = n — 1, that is with f 1> fo. The
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first possibility is restricted by the fact that it also would appear to require
strictly p/ | ¢| < n — 1, contrary to (3). The approximation, however, is reason-
ably good for values of p/ | ¢ | of about the same order as n. The second case also
seems to be relevant only when p/c exceeds n — 1 by only a small amount. Cases
where p/c greatly exceeds n — 1 may be handled more satisfactorily otherwise,
as in the following section.

Both cases, however, suffer from the difficulty that the value of k' is not, in
general, integral. This will not be an insuperable difficulty if P’ be small and &’
large, for then we may be in the territory where a Poisson distribution may ap-
proximate to the positive binomial and hence to the original distribution. How-
ever, again it seems that large values of p/c or p/ | ¢ | (whether exceeding n or
not) may be dealt with best by the Gram-Charlier approximations.

7. Gram-Charlier approximations. Stage I, binomial type. Let us now consider
cases where the ratio p/c is large. Returning to (4), we have already shown that
the summation term is the coefficient of §”/n!in ¢®(1 — ¢~*)". If ¢ be sufficiently
small, then wé have

(13) (1 — e/ = 6°(1 — chz/2 + *0x(3z + 1)/24 — ---).
Hence the summation term is

(19) _'_ c,q,._z (1’ _ cx(nz;- z) n cz(Bz + 1(n 2;;)(7@ —z+1) >

Alternatively, with ¢ small, the summation term is
d’ n n! cx\" " ,
{779;0=/2(q_60) —’n—-x!<q —2-> ¢

- n!cvﬂoﬁ}ﬂn—@+ (n—@m—x+0>

A(g — cx)" =

(14a)

0 — ! 2q 8¢?

These approximations are, of course, true for all values of p/c.
If we leave the product part of P(n, ) in its original form, obviously we can
obtain as an approximation to the whole expression

15) Pz = (1)l + o +2) -+ Ip + @ = Dellg — o/

In this form there is more hope of a maximum likelihood fit.
If, however, p/c be sufficiently large, we may write the product term of (4) as

plp.+c) - [p+ (@ — 1)

zle®
(16) m,( + = Zr + = g;’s)
c x(x 1) ¢ zlz — D — 2Bz — 1)
x'c"<1+ _2—_+;2. 24 )’
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and hence derive

P(n,z) = (ﬁ)q""p’ {1 + 2zlx — (np + ¢)] 2%q

x

a7 +zpP'Gz+ N —2)(n — z + 1) — 6pgz(z — )(n — 2)

2
2 ¢
+ P = D = D = Dl gl = o
The term in ¢’ will be at most of order ¢*n'/8, and subsequent terms of smaller
order. If, therefore, such terms may be neglected, we may write

(17a) P(n,z) = (:) g p° [1 + zlz — (np + 8)] é—;)q]'

It is instructive to compare this distribution with the binomial distribution
having constant probability p. With ¢ positive, that is, probability increasing,
P(n, x) exceeds the corresponding binomial term for x > np + ¢, and P(n, x) is
less than the corresponding binomial term for 0 < z < np + ¢; with ¢ negative,
the conditions are reversed. (It can also be established that the conditions on ¢
that make the approximations valid also ensure that P(n, x) is always positive.)
If, moreover, n and p are of the order to make the binomial symmetrical, the
skewness of the distribution is an immediate guide to the sign and magnitude of c.

Stage 11-A, Limiting form for large n and large p. As indicated in Section 5, the
conditions necessary to ensure that the approximations will be valid for all
have not been elaborated. It is immediately obvious that much less stringent
conditions will apply for early terms of the distribution than those required for
the whole distribution. For central values of p, the latter terms of the binomial
part of the expression for the distribution will in any case be small, and the ab-
solute if not the proportionate error small.

These considerations become important when we examine the limiting form of
(17) when n becomes large. By the change of variable X = (z — np)/V/ npq
used to transform the binomial into the normal distribution, we find as the con-
tinuous distribution parallel to the normal

(18) dP = ¢(X)[1 — 3nc + {n(n — V)pc / 2/ npg} X + incX’ dX,

where ¢(X) = (2r)™"* exp {—21X’}. If ¢/p be not quite small enough to make
the Stage I approximations valid, there will be discrepancies at the right tail.
The fit will be'poor at both tails in any case, in the same way as the normal is a
poor approximation to the binomial at the tails. But, by and large we may expect
to get a good fit with a curve of the form

(19) dP = ¢(X)[(1 — @) + a1 X + a.X"] dX.

By transferring the origin to the mean x = a, and standardising the distribution,
we may obtain readily

&«
(20) dP = ¢(X)[1 + psH /3! + (1 — 3)Hw/4! + ---]1dX,
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which is the standard Gram-Charlier Type A distribution [6]. As shown earlier,
the skewness of the system indicates the type of scheme operating, that is, the
sign and relative magnitude of c¢. Consideration of the order of the terms involved
indicates that we need consider only the terms listed.

Stage I11-B, Limiting form for large n and small p. The limiting process used in
Stage II-A is of course valid only if p is not small. It is interesting to investigate
whether with p small (but p/c still large), we obtain the Gram-Charlier Type B
distribution. For all p we may write (17) in the form

(21) P(n,2) = (2) 0 — [(Z - i) o <2 - ;)q,._zpz_ﬂ’

where A = In(n — 1)(p/g)c. If now p be small, and of order n, such that
np=m, (@m—1DLp=my, (n—2)p=ms,
when n becomes large we obtain ,
(22) P(n,z) = e ™mi/z! — N "m " /(x — 1) 4+ N mi T/ (z — 2) L
It is now reasonable to equate the m’s and write
P(z) = e ™m*/z! — M/ (x — D)+ an™%/(x — 2)1],
which again may be written
(23) P(z) = (¢ ™"m"/z)[1 — Ax/m + r\z(x — 1)/m?).

This is the required Gram-Charlier Type B [6]. It is most easily fitted by means
of the relations

(24) pr=m-4+N  p=m-+ 3N =\,

which can be solved readily for m and . As an illustration, “Student’s” data
have been fitted by this distribution also (Table II). We have m = 0.61567 and
N = 0.06683. The fit, though reasonably good, is poorer than those previously
considered; this may reasonably be attributed to the relatively low values of
n = 13 and of p/c = 2.45.

8. Calculations. The validity of the approximations suggested above is demon-
strated by 16 examples in Table III. We have here a number of distributions
calculated with a selection of values for n, p, and ¢, and the values given by the
relevant approximating distributions. All values are quoted to four decimals,
though they have been calculated to five or more. The approximating distribu-
tions used are identified by roman numerals.

Type I is the negative binomial fitted from the moments of the distribution.
In each case the values of the parameters used are given for comparison with
those given by (11), which also are given.

Type 11 is the approximation of the form suggested in (17a). In this case there
. is no attempt to find n, p, and ¢ from the data to give the closest fitting curve of
this type; the values used are those of the original distribution. Table III shows
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the constant np + ¢ and ¢/2pq, used in (17a) with the corresponding values of
n and p.

Type III presents the areas cut off in the range x & % of the continuous dis-
tribution of the form of (19). Table IIT shows the transformation from z to X,
and the values of a, and @, as calculated from the initial values of n, p, and c,
with no effort at improvement.

Type IV is the positive binomial, used where the moments make it impossible
to fit a negative binomial. Since the exponent is not an integer, it is fitted as a
Poisson, of which the parameter m is given.

Type V is a Gram-Charlier Type B of the form of (23), fitted when appropriate.
The parameters m and A, obtained from (24), are given.

The 16 examples fall into five groups, which examine different aspects of the
approximations.

Group A has n = 100 and ¢ = .0050 throughout. The value of p varies from
.0005 to .0500 and the ratio p/c from 0.1 to 10.0. With n as high as 100, only
the early terms can be evaluated readily. This limits the possible range of p,
and of the ratio p/c. The negative binomial provides a very good fit for low
values of p/c. It is still good for the earlier terms of the fourth example, and on
the whole better than the Type II approximation.

Group B has a smaller » of 20 and a larger ¢ of 0.01, but values of p such that
the same four values of p/c are obtained. Again, for low values of p/c the nega-
tive binomial gives a very good fit. For larger values of this ratio, however,
Types IT and V are also relatively good fits.

Group C comprises three examples where p/c is larger than n, which is 10 in
all three. The negative binomial can no longer be fitted. The Type II approxima-
tions are reasonably good in all three cases. The Type IV and V approximations
in the first example suffer from the small values of n, while the poor Type III
approximation in the third example reflects the poorness of the normal as an
approximation to the binomial with » = 10 and p as large as 0.70.

Group D presents three examples designed to examine the validity of the
Gram-Charlier Type A approximation, Type III. Since n is small, a limitation
produced by the practical difficulties of computing the “exact’ series, central
values of p have been taken because the binomial-normal approximation is
closest at these values. In the first two examples the Type II fit it sufficiently
good to make the Type III fit reasonable. In the third example, with a larger
¢ = 0.04, the Type II fit is relatively poor and the Type III fit is worse, reflect-
ing the fact that terms in ¢’ may no longer be neglected in (17).

Group E contains two examples in which ¢ is negative, —0.01, with = still 10.
Types II and IV are used in the first example, with p = 0.10, and Types II and
III in the second, with p = 0.50.

9., Significance of the results. In all fields of scientific investigation the end
goal is always explanation rather than mere description. The negative binomial
and the Gram-Charlier set have been found to be good descriptive fits for a large
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number of empiric distributions. Probability systems to ‘‘explain” them have
also been available.

The assumption that we are sampling from a population where the probability
varies between individual members and is distributed in the form of a gamma
variate will produce as the expected distribution the negative binomial. Equally,
the Gram-Charlier system may be derived as the resultant of a small number of
linearly additive independent causes of about the same order of importance.

In both cases, distributions arise where these explanations are unconvincing.
It has been shown above that a much simpler hypothesis will produce distribu-
tions that are at least as good a fit, and which in some cases, though perhaps not
in all, provides a more convincing “explanation.” As with the normal distribu-
tion, we can choose which of two alternative “explanations’ is most suitable in
any particular case.

The fact that the same probability scheme “explains” both types of distribu-
tion considerably systematises the field. Moreover, it appears that there are
large areas of possible values for the parameters n, p, and ¢, where the approxi-
mations will not be valid. It is hoped that many empiric distributions which
previously have appeared to obey no simple law now may become more tractable.

It is possible, with reasonable ease, to establish that both the negative binomial
and the Gram-Charlier Type B distributions may be considered as special cases
of the Neyman contagious distribution, and hence that our present distribution
will often be closely represented by it. It is more difficult to establish a direct
connection, ‘but other writers may succeed.

Though Neyman claims for his series that “All the constants introduced have
meanings which are easy to interpret,?’ this does not appear to have been general
experience. The distribution of the present study may be of equally general ap-
plication and provide opportunities for much simpler interpretation.
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