ON THE NORMAL APPROXIMATION TO THE
HYPERGEOMETRIC DISTRIBUTION'

By W. L. NicaoLsoN
University of Illinois

1. Summary. In this paper a new normal approximation to a sum of hyper-
geometric terms is derived, which is a direct generalization of Feller’s normal
approximation to the binomial distribution [2]. For intervals that are asymmetric
with respect to the mean, or when the distribution is skewed, the new approxi-
mation is a marked improvement over the classical procedure.

The hypergeometric distribution is discussed in Section 2, along with the
classical norming and the resulting approximation. Feller’s remarkable normal
approximation for the related binomial distribution is given in Section 3 with
an indication of how it can be extended to cover the hypergeometric case. The
result of such an extension is presented in Theorem 2 of Section 4. This theorem
gives upper and lower bounds on the hypergeometric sum and hence provides
a useful estimate of the relative error. Preliminary results to proving Theorem 2
are exhibited in Section 5. The proof follows in Section 6.

2. Introduction. Let = be a finite population of N elements, D of which
possess a specified characteristic S. In a random sample of size n(n < N),
drawn without replacement from , the probability G that exactly & of the n
elements possess S is given by the hypergeometric function. Defining H,,, as
the probability that k satisfies the inequality A = k& =< », we have, symbolically,

D\ (N -D
E/\n—kFk >
(1) G =" "L, H,=2 G.
N k=N
()
The mean p and the variance o7 of the distribution (1) are given by

_ D s n(N—n)DN — D
(2) [,L—-n]-v- and ah_N—lZTf N .

If N, D, n, and % increase without bound in such a manner that

(3) % — limit, ]_n\f —> limit, and 2z = (k — p)oy — 2, say,
then (see [1], page 146),
(4) Gk ~ (27r)—1/20_}-:le—22/2,

Received March 28, 1955; revised September 6, 1955.

471

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. IIKORS ®

Www.jstor.org
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where the symbol “~” means that the ratio of the two sides tends to one as
the arguments increase. As a consequence of (4), approximations to G and
H,, of (1) for large N, D, n, and k are

1

® m= @, i ma=e(att)-e(a- o),
Oh

respectively, where
©) o) = @i [ ra

Since (4) is an asymptotic result, we naturally are interested in the magnitude
of the error involved when finite values of N, D, n, and k are used. The maxi-
mum error in the approximation (5) to (1) is O(¢3"). For most values of z;
(excluding only those values of z; that are close to zero), the contribution of
the corresponding G, terms to the sum Hy,, is negligible in comparison to o3 .
Now, 2 will be large if |k — u| is large or if DN is close to zero or one. Hence,
for the cases of primary interest—an evaluation of the tail of the distribution
(1) and an evaluation of (1) when a small percentage of the elements of = possess
or do not possess S, as the case may be—the approximation (5) leaves much
to be desired.

The above two instances will tend to invalidate the fit of any normal ap-
proximation to (1), since they constitute cases of extreme deviation from nor-
mality. For an approximation to (1) to be useful, it should be accompanied by
a concrete bound on the error involved, preferably, a bound on the relative
error that would not be affected seriously by the above extreme cases. Such
a bound, as a function of N, D, n, A\, and », would explicitly tell in any given
situation whether N, D, and n were sufficiently large to give the desired accuracy.

Approximations of the type in (5) that are functions of linear limits possess
error terms which for the above extreme cases are at least O(s% ") over a uniformly
bounded interval, an interval which does not increase with o5 . Outside of this
interval, the error is even larger. In an attempt to improve on the approximation
(5), we consider the case where the limits are quadratic polynomials. The
impetus for such an approach is due to the remarkable result of Feller [2] for
the related problem of normal approximations to the binomial distribution.
Since our development depends heavily on that of Feller, we include his result
in detail.

3. Feller’s result. For fixed n and 0 < p < 1,¢ = 1 — p, Feller’s designation
of the binomial distribution is

7) T, = (Z) p"q"_", Py, = Z Te.

k=\
Set _
(8) = {k+ 31— (n+ plel’ and ot = (n + 1)pg.
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Replacing the orthodox norming, (k — np)(npq) ™%, by x4, Feller derives an
exponential expansion for 7 which lacks the troublesome square root factor
present in the classical expansion about (k — np)(npg) ™. (For a discussion of
the classical procedure see [1], Chap. 7, Sec. 2.) Using the new expansion (see
Theorem 3 of this paper), he obtains upper and lower bounds for P,,, as normal
integrals with quadratic limits in x;, and 2,41, respectively. The unique
feature of the approximation is that the gap between the two bounds remain
O(o1") throughout an interval which increases with o, . Moreover, a useful
upper bound on the relative error is provided.

Let 6a; = p — g¢. Feller’s normal approximation to the binomial distribution
is contained in the following

TurorEM 1. Suppose that

9) g >3

and

(10) A2 (@m+1p, v+3=@®+1p+20i/3
Then,

(11) Py, S 0P (5,,0) — &(m)}

of

A — 2
(12 a=tztlpy ‘j‘il{"i—*(" + D—”} +20_ 1

g1 g1 é—;’f ’
whereas the inequality in (11) s reversed if
- ] k— )p\¢ , 2
(13) ,7,‘=Iﬁ___(1’_'{_"_1)p+@{h__(.n_i_)l’} + a‘+_.__|.
a1 a1 g1 60 T
where
3

(14) My === {y+3}— (n+ Vp}lei’.

[}

It should be stressed that this approximation holds for all combinations of n
and p for which (n 4 1)pg > 9. A must only be larger than the central value,
and » smaller than a monotone increasing function of ¢y, which for ¢y = 3 is
more than two standard units above the central value. An analogous result
holds for (A, ») intervals to the left of the central value. The gap between the
bounds is O(s1"), as long as 23, = O(sy), which covers most cases of interest.
Returning to the hypergeometric problem, we note that if N and D are large
relative to n, sampling without replacement is closely approximated by sampling
with replacement. In this case, (1) differs little from the binomial distribution
(7), with p = DN'. This suggests that Feller’s result could be generalized to
the hypergeometric distribution if the ratio GxT%" (with p = DN™) could be
written in a suitable manner as an exponential expansion of the type (31). In
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Section 5 it is shown that by slightly altering the definition of p to p =
(D 4+ 1)(N 4 2)7", the corresponding ratio G;T%" does have such an expansion.
Multiplication by the Feller expansion for T gives an expansion of G, which
admits almost identical treatment as that used by Feller to approximate T .

4. Normal approximation to hypergeometric. In order to simplify the nota-
tion, we introduce several auxiliary functions. Let

_D+1 1 _n+1
P=NT3 g=1-1p; $= N1

Thus, for large values of D, N, and n, p and s are approximately the proportion
of elements in = that possess S and the sampling fraction, respectively. Set

(15) t=1-—s.

(16) a=13%@— - s).
For each value of k, define
a7 o=[k+3—(+pl, o =(n+ Lpg.

The normal approximation for the hypergeometric distribution that is derived
in this paper can now be stated in a form similar to that for the binomial distri-
bution. The only changes are those due to the finite population.

TuroreEM 2. Suppose that

(18) >3

and

(19 AzMm+1p, v+i=Mm+Dp+3’ n—vz24 D—-rz4
Then,

20) H, < @—j{—;) F{Bne) — B(m)},
where
_ 50 — pg)(1 — st) 2
@n k= 3607 RETE))
and
. _ 2
02 o=l 1)p+g{k (n+1)p}+§9_§1_2,
g ag g ag g

whereas the inequality in (20) is reversed if
2
@) -t @D o=t Upl, 2e, M1
o I o 60 o

g

where

I

al&,

(24) M ={r+3—(n+ Dp}’™
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The remarks immediately following Theorem 1 pertain equally to Theorem 2
if (n + 1)pg, o1, and z;, are replaced by (n + 1)pgt, o, and , , respectively.

As a point estimate for Hy, , we suggest the right side of (20), with #, defined
by (22) plus (26*)™". Designating this estimate, the lower bound and the upper
bound by A, L, and U, respectively, we obtain the following upper bound on
the relative absolute error,

1

Lmax[H—\-L,U—-ﬁ].

(25)

As an example of the increased accuracy afforded by the estimation procedure
of Theorem 2 over that of (5), we consider the case N = 5000, D = 500, n = 500,
A = 51, and » = 56. Then, ¢* > 40, which certainly satisfies (18). The correct
value is Hes ~ 0.30847. Theorem 2 gives the bounding interval as
(0.30426, 0.31050) with the point estimate # ~ 0.30770. By using (25), the
upper bound on the relative error is 0.92 per cent (calculation shows it to be
0.25 per cent). The classical procedure (5) estimates 0.31513 with a relative
error of 2.16 per cent, about nine times as large as that for A.

We can not expect the discrepancy to always favor our new procedure to
such a marked degree. The symmetric cases when p and s are close to one-half
(i.e., when a is close to zero) serve to illustrate this. Here, the limits (22) and
(23) of Theorem 2 are almost linear functions of z. We can expect the two
estimation schemes to give essentially the same result, and there is no guarantee.
that the estimate of Theorem 2 will be better. As an example of the symmetric
case, we consider a case of perfect symmetry, a = 0. Let N = 400, D = n = 200,
A = 101, and » = 105. ¢* > 25, which satisfies (18). The true value is Hyp1 108 &
0.32452. Theorem 2 gives the bounding interval (0.31832, 0.32822) with 0.32476
as the point estimate. The bound on the relative error is 2.02 per cent, while
the actual relative error is 0.07 per cent. The orthodox estimate (5) is 0.32426
with a relative error of 0.08 per cent. While the two estimates do not differ
significantly, we still have the added attraction of the bounding interval provided
by tHe new procedure.

As a rule of thumb, we suggest the use of Theorem 2 when the distribution (1)
is skewed (i.e., when a is not close to zero). If only a point estimate is wanted for
H), , the symmetric case can probably be handled just as effectively with the
classical procedure (5).

6. Hypergeometric expansion. The following two lemmas and Theorem 3 are
due to Feller [2]. We state them here for the sake of completeness (for proofs,
see [2]). In the process of approximating H,, , sums must be replaced by integrals
of the normal type. Lemma 1 expresses the normal integral in a form that will
be useful in this connection.

LemMMmA 1. For 0 < h < 1 and |zh| < 14,

z+h/2
(26) f e du = hexp =22 + (& — DR/24 + whl),

—h/2
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with
27) —2' /880 < w < 1/264.

We have slightly relaxed Feller’s condition of |xh| < 1. As originally stated in
[2], the lemma is not sufficient for our purpose. More care in handling Feller’s
inequalities shows that (16) of [2] is valid for 0 = a =< 0.7. The remainder of
the proof is identical to that of [2]. A modified form of Stirling’s formula is
provided by Lemma 2. This will be useful in expanding Gy as an exnonential
series.

LemMma 2. For n = 4,

\ _ 1igg, 4 1ynH/2 _ 1y 1 7 1+ ¢
@) = @o"0 ) o~ + D)~ gl 4 >} ’
or

| = 12 _n+1/2 _ _1_ _ 1+ ¢2}
(29) n! = 2mr)"n exp{ n + o ~ Beont [’
where
(30) | < 3, ¢.—0 as n— o,

Feller’s exponential expansion of the binomial distribution (7) is given by

the following
TueoreM 3. If k = 4,n — k = 4, and |z| < oy,

© v—1 v—1 v
_ —12 -1 0 = (=97 @
Tk = (27[' g1 exp { zz:: v(v . 1) 07{-—2

31) 1 2 o\, 1+ 2pq
»—1 v—1 1
+§—4——012;[p - (=9 ]<U—1> +W_Pl};

where x, and oy are defined by (8), and

7 (14 1+ } 14+ ¢
@2 = 2880{(1c+ p T mTn - Gror 50+ o
Here, as in the sequel, the subscript ¥ on @ will be omitted when there is no

chance of confusion.
In order to obtain an exponential expansion for the hypergeometric distribution
(1) of the type (31), we consider the following norming. Let

B3) mpr=1{k+3%— -+ Dplos* and oy =N —n+ 1)pgq,
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where p and g are defined by (15). To utilize Feller’s binomial expansion, we must
express the non-binomial portion of G; as a suitable exponential series. Write

(34) G = TWCy,
with

_ D4+ DIN—-D+ DN — n+ 1!
"D —kN —D—n+k!N+2)!

, W + DOV + 2) 1
OFON D+ DN —nF D pg*

In the expansion of C , we shall use (28) for the two factorials involving & and
(29) for the four not involving k. Then,if D — k =2 4and N — D —n + k = 4,

C

(35)

log Ci = [(D + 1) + 3] log (D + 1)
+ [N —-—D+1)+ 3llog(¥V —D+1)
+IN—n+1)+3llog(N —n+1)
—[@+1) =&+ Nllog [(D + 1) — (k& + 3)]
-~ W-D+1)~(@m+1)+ &+ Dllog [N —D + 1)

(36) —(+ 1)+ &+ 3)
— [V +2) + 3] log (N + 2)
n 1 '+ 1 n 1 _ 1
120+1) "12W-D+1) "12N —n+1) 120N +2)

+ 1 4 1
24[(D+1) = (k+3)] 24[(N-D+1)—(m+1)+ &+ 3)

+ log (N + 1) + log (N + 2) — log (D + 1)
—log(N—-—D+1)—log(N —n-+1)

—klogp — (n — k) logg — pe,
where

_ 7{ 1+ & n 1+ ¢ }
PTRO\D + D) —G+HF  (N—D+D—@m+1) + G+ DHF

_1_{1+¢2+ 1+ ¢ 1467 144"
360\ (D+12 ' N—D+132 " (N-—n+13 N+ 23"

@37

+ +
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We now introduce the substitutions (15) and (33). Algebraic manipulation
reduces (36) to

2
log Cx = — 2(1 +llx_2>1og<1 + @)
y4 o2 a2

2
R
q o2 o2

P g
~ + +
(38) 240 (1 + ”—’”2) 24a§< - ixﬁ)
(4] a2
b= P PO

12pgN + 2) ' 12

N 41
e romw —wrom

To expand (38) as an infinite series, we must impose the condition that |z:| < o5 .
The combination of the resulting series, in a manner analogous to that of Feller,
gives

TeEOREM 4. If D —k 2 4,N — D —n+ k 2 4, and |25| < o2,

_ N + 1 _ 0 qv—l — (_p)v—l x;
“‘w+mmw-n+wﬁm{§*7vrw—ﬁs
1 =, v—1 v—1 T2 -
@ gl - am(2)
1+ 2pg 1—pg _
t o1 1mw+m”&

where p and g are defined by (15), x, and a2 by (33), and p; by (37).
Using (8), (15), (17), and (33), we can derive

1,1 1 N+1 1 _N+11
U Z+5=5 ™M mrgmm ¥R, - NE2s
Define
(41) p=p+p.

Combine the expansions for T and C given in Theorems 3 and 4. Make the
substitutions indicated by (40) and (41), to obtain the following
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TueoremM 5. If k =2 4,n — k=24, D -k =4, N —-D —n+k=4,and
|zl < o,

Gx =

N ot op {— SR (0= (0

1)(1) - 1) ot 2
“) + 24"’1?2 27T = (=TT = (=97 (g)

41+ 2p 1 —pg _p}
2442 12pr(N + 2) ’

where P, q, s, and t are defined by (15), x and ¢ by (17), and p by (32), (37), and

(41).

Except for the terms independent of x and the extra factor in each of the
series, (42) has the same form as Feller’s expansion (31). In the next section we
prove Theorem 2 by an argument almost identical to Fellers. Only minor changes
are necessary to cover the differences in the two expansions. Feller’s notation is
used and reference to his proof is indicated by “F”.

6. Proof of theorem 2. Since we are interested in values of k¥ which satisfy
A = k = v, hypothesis (19) implies (39 - F). Hypothesis (18) implies & = 9,
N—-D—-n+kz29n—k=291/pt—% —3%andD — k=291 /qgs — %) —
1. In most cases this is sufficient to satisfy the hypotheses of Theorem 5. To
cover the possibility of either pf or ¢s being close to one, we have included the
extra hypotheses n — k¥ = 4 and D — k = 4. In any case, the hypotheses of
Theorem 5 are satisfied and the expansion (42) of Gy, is valid. By using (39 - F),
the remainder, p, in (42) can be shown to satisfy

1

(43) 0<p<—— o5

The remaining portion of the proof is devoted to showing that the expansion
(42), where p satisfies (43), can be written as a product of two factors—the first
independent of k, and the second similar in form to the right side of (26) with
argument z replaced by #; , defined by either (22) or (23). If #; is given by (22),
we show that the second factor is less than the integral of (26) with x replaced
by m , and if by (23), that it is greater than the corresponding integral of (26).
The proof is completed by summing over all admissible & values.

For each k, define & by (38 - F), where a is defined by (16). In the sequel
we shall use the fact that |a| < }. The subscript & on £, and x;, will be suppressed
when convenient. By (39 - F), we have

44) 2= ¢ =Lx fora > 0, and Jr =tz for a < 0.
Set

(45)

_ i [pv-—l - (_q)v—-l] [t'u—l _ (_s)v—ll xv

v — 1) o2’



480 W. L. NICHOLSON
*

The first series of (42) is A, . We write
(46) A, = 3 + 4,

where
_[@+DHE+S) az] z!

The function within the brackets is defined in the (p, s) unit square with ab-
solute maxima of % at (1, 1) and (0, 0) and the unique absolute minimum of
'1_9_2' at (27 2/

We shall need bounds on 4. First, consider the case ¢ > 0. In this case, all
terms of A5 are positive; so, by (47) and (44),

1201

if @ > 0.

If ¢ < 0, 45 is an alternating series with the first term negative. Each negative
term is smaller in absolute value than the preceding positive one. So, by (39-F)
and (47),

P+AHE+S) _d @ - - s‘)] z*
“9) 4= [ 12 Tt 30 @
The function within the brackets is defined in the (p, s) unit square and has
its unique absolute min mum of 135 at (3, 1). Using (44),

1x>1£

022 To2,2 1e<0

(50) 4=z

The series A; can be majorized by a geometric series to give a uniform upper
bound of 1.01z* / 16¢°. Thus, from (47) we obtain

5 1.01 2z
1) A<<72+16> <
Let
1 S V. v—=1yr 90— v v
6 B - Comie - o (2)
j g
The second series of (42) is B; . We write
(53) By = &+ B,
where

_1[@+HE+ ) a2] z’
(54) B"é[ 12 5ot B
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Bounds on B are obtained in a similar manner to those obtained on 4. An
argument on (54) identical to that preceding (48), with A; replaced by Bs,
gives

1\ )
(55) B>2<192> >0 ifa>0.

Likewise, if A < 0, the argument preceding (49), with 45 replaced by Bs,
applies to (54) Therefore, from (54),
(p +AHE+) a8 = - s‘)] o

The function within the brackets has the same absolute minimum as that of
(49); so, (55) is also valid if @ < 0. While a uniform upper bound on A4 is suffi-
cient for our purpose, we must consider the two cases separately on B. First,
let & < 0, then the series Bs can be majorized by z* / 192¢". Using (44) and the
discussion following (47), we have from (54)

1 5 1772 18 .

For a > 0, B; is a positive term series which can be majorized by z° / 12¢°.
Again, by (44) and the discussion following (47), we have from (54)

1/5 172 18 .

Define A% by (50-F). Then (51-F) and (52-F) follow. Substitution of (46),
(53), and (52-F) into the expansion (42) gives

N 1 _
G, = Ni2@)”%um{——s+ "
_ 4q _ 1+2_33(_1
(59) ¢@0+7Q A+B+1E2

_ﬁﬁLm}

2p¢N +2)  °[°

To eliminate the logarithm term, define C' by (54-F). Expressing C as an in-
finite series, we can bound C to obtain (55-F). Define y and Ay by (56-F), where
u is a parameter to be determined. We note that y as a translation of ¢ also
satisfies (51-F). If we define u by (57-F) and define u; by (22), then (58-F) is
valid. Likewise, if we define u by (59-F) and define 7, by (23), the identities
(58-F) are still valid. Because of (58-F), our Theorem 2 will be proved if we
show that with  defined by (57-F),

1 1 1
(60) Gké%:::26R{‘I’<yk +—2-Ayk>-—d><yk—-§Ayk>},




482 W. L. NICHOLSON

and that the inequality in (60) is reversed if u is defined by (59-F); R is de-
fined by (21).
Using (54-F) and (56-F), we can transform (59) to

61) Go=" i L Fen R,
where
2
(62) Fk=Ayexp{——;—y’+%ﬁl(y2—1)+E}

and F is given by (62-F).

Let u be defined by (57-F). Noting the form of (62) and Lemma 1, with A
and z replaced by Ay and y, respectively, the inequality (60) will be proved.if
we show that (63-F) is satisfied.

Substitution of the bounds (18), (43), (48), (50), (57), (58), and (55-F) into
(62-F) gives, using (63-F),

2 .
63) aZE1<i;—5—i£+ész—ﬁg‘ ifa>0
and
2 1 1 1 .
(64) 0'2E1 <9_0_§E+5£2—E2£4 1fa<0.

We are interested in values of x which satisfy (39-F). For such values, § =
107/216¢. Elementary calculations show that the quartics in (63) and (64) are
negative if £ = 107/216¢; therefore, (63-F) is true. This implies (60) is also
true. Summing over all k values in the interval A < k =< », (58-F) and (60)
give (20). Thus, the upper bound for H,,, is valid.

A similar argument suffices to prove the lower bound is valid. Let u be de-
fined by (59-F), then, as before, from (62) and Lemma 1, (60) with the reverse
inequality will be proved if we show that

o Yt
(65) E,=FE 64 = 0.

First, we need several auxiliary bounds. By (24), (44), and (54) we have
3M .
A < 200 2 ifa <0,

(66)
A< 2££ if a > 0.
150

Also, (69-F) follows if ¢ < 0, and

2 2 2
Y 4at 11 1 2a _u
(67) pYe (1 + T) = <§> pre (5 + ;>
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if @ > 0. Substitution of the bounds (18), (43), (55) (which is independent of
a), (55-F), (66), (69-F), and (67) into (62-F) gives (70-F) if a < 0, and

ul 1 ) u 1
> (1—-— ). 2 >
Bz 2q2 (1 6q?/ 180*  300*
w 2M 1 u 1
F(-E - )i
if @ > 0. Bounding the constant term in (70-F) and (68) (constant with respect
to £) and evaluating the coefficient of ¢ by means of (59-F), we obtain

(68)

6 1 203 (¢ 1 (£
> e — —_ 3} - {2
(69) B2 — 1572 " 5005 T 2268 («;) 24 (a)
if a <0, and
_ b 1, 152 (F) 1 5>2
(70) B 2 — 5500 ~ 300 T 1134 <;;> i§<;

if @ > 0. The right sides of (69) and (70) are parabolas in ¢ opening downward.
To show non-negativity, we need only to check at the endpoints of the { in-
tervals which correspond to (39-F). These are

107 20 .
o160 <3 Ha <O
@) 1 20
T .
'2—a_'<£<—é7- ifa > 0.

Making the above substitutions, the right sides of (69) and (70) are seen to be
positive. Hence, (65) is true; therefore, the lower bound, (60) with inequality
reversed, is also valid. As before, summing over all admissible & values gives
(20) with the inequality reversed. Q.E.D.
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