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which is therefore a confidence statement with a confidence coefficient greater
than or equal to the confidence coefficient of (2.9). Thus, if (2.3) has a probability
1 — @, (2.9) has a probability 1 — 8 =2 1 — «, and if (2.9) has a probability
1 — B, then (2.11) has a probability 1 — ¥y = 1 — 8. The bounds in (2.11) are
the ones obtained in [2] in a different way.
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A NOTE ON THE NORMAL DISTRIBUTION

By SEymour GEISSER!
National Bureau of Standards

1. It is well known that a necessary and sufficient condition for the inde-
pendence of the sample mean and variance is that the parent population be
normal. This was first shown by R. C. Geary [2], and later Lukacs [3] gave a
somewhat simpler proof using characteristics functions.

By using the method of Lukacs one can derive a similar theorem concerning
the sample mean and the mean square successive difference.

2. Let z,, - -+, x, be independent and identically distributed with density
f(z) and mean u and variance o°.
Let
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The following theorem can be proved:

THEOREM: A necessary and sufficient condition that f(x) be the normal density
is that 8; and % be independent.

Proor: If 5; and & are independent, then we follow Lukacs [3] step for step,
replacing

§=n"n — 1) 2 2k — 22 2 zatpil
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It is easy to show that
ei(t) = W(t/n)",
where
v = [ & ) o,
and
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This leads to the same differential equation

dz‘/’ <d93>2 2 2
"‘P(t) iz + d—t- =0 [‘//(t)]
obtained by Lukaecs, and the solution of which is the characteristic function of

the normal distribution.
The converse is a special case of a lemma by Daly [1], which says that &

and g(z:, -+, @,) are independent in the normal case if g(x;, ---, z,)
g(xs + a, -+ -, 2, + a). Since 8% is invariant under a translation, the theorem
is proved.
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