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RELATED SERIES IN APPROXIMATING DISTRIBUTIONS'

By Davip Duranp aND J. ARTHUR GREENWOOD
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0. Summary. The distribution of the sum of #» random coplanar unit vectors
and of a given component of the sum has been discussed by many authors, who
have shown that each distribution can be approximated in series that are asymp-
totically normal. But the difficult question of the usefulness of these approxima-
tions for finite n—in particular for small n—has not been exhaustively treated.
Accordingly, this paper reexamines some analyses of Pearson’s series for the
vector sum, presents corresponding series for a component, and examines the
accuracy of the latter series.

1. Basic formulas. Given a sample of random coplanar unit vectors [cos
&, sin &), where all values of £; ( = 1, 2, ... n) between 0 and 27 are equally
likely, we define the quantities

V=2 cos &, W =Y sing, R = (V* 4+ WH
‘According to Kluyver [10], the probability that 0 < R < ris
r [ [Jo@®T"J1(rt) dt,
0

and the probability that 0 = V = v is

Ii

(1) PR(T, n)

» Sin vt

1 1 [
(@) Pro,m) = 5+ = [ @I
2 T Jo t
Differentiating (2) yields a formula for the differential of probability, namely
3) dPy(v, n) = l:l f [To@1 cos vt dt] dv,
T Jo

explicitly given by Lord [11].

2. Series approximation of the R-distribution. As an asymptotic approximation
to (1), the method of steepest descent yields a formula originally due to Ray-
leigh [16)--namely,

4) 1—¢",
where & = r*/n. It will be seen that (4) is the volume under the two-dimensional

Gaussian bell
' v24w?

aP = L 5" v dw
™
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1 This is a revision of the paper ‘“‘Approximation to the Distribution of the Sum of

Cosines of Random Angles (Preliminary Report),”’ which was presented at the Ann Arbor
meeting of the Institute of Mathematical Statistics, August 30, 1955.
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inside the circle »* + w’ = nmz. As an approximation to the differential
(1/2xr) d/drPg(r, n), Pearson [14] derived an asymptotic series having the form

®) 2 o) = 3 L@,

where the L;(x) are Laguerre polynomials, and the c; are as follows:

o =1, a = 0,

2ley = —1/2n, 3les = —2/3n

4ley, = (6n — 11)/8n%, 5les = (50m — 57)/15m",

6les = — (1892 — 2125n + 270n°)/144n°.

Pearson believed that series (5) through ¢s would provide a satisfactory ap-
proximation for n > 6. Lord [13], however, writes: “These formulae have been
very little tested for s > 1, but they would appear to behave rather like the
Type A series (s = 1)” and to give satisfactory approximations for nearly normal
distributions except at the tails. In the case of the distribution of the sum of n
coplanar random vectors of equal magnitude, Pearson concluded that five terms
[i.e., through cs] of the series were enough to give four-decimal accuracy for
n = 7, but investigations which the author hopes to publish shortly suggest that
he was rather optimistic.” Lord supports his belief with some illustrative cal-
culations for n = 4, 6, 8, and 10. On the basis of our own calculations we concur
with Lord’s view, although we realize that the suitability of an approximation
depends upon the number of reliable decimal places that one demands to work
with, and this in turn depends upon whether one wishes to approximate the
central portion of the distribution or the tails. For significance tests one wants
fairly accurate points in the tail.

In considering the accuracy of a series approximation, one may be interested in
two things: first, how many decimals a fixed number of terms will yield; and
second, the most profitable term to stop at. We missed the second point in our
previous paper, where we presented a table (Table 3 of Greenwood and Durand
[6]) showing calculated values of (1) for n = 7 and n = 14 for comparison with
Rayleigh’s approximation (4), the integral of Pearson’s approximation (5)
through c¢s , and a rearrangement of the integrated series through n~°. On re-
examining the calculations underlying this table, we find that the term in n™*
secures about three decimal accuracy; and that for n = 7, further terms are not
very helpful, but for n = 14 the term in n™” increases accuracy roughly from
three decimals to four (see Table 1).

3. Series approximation of the V-distribution. Early writers on the random
walk—including Einstein [4], Rayleigh [17], and Wiener [20]—recognized that the
distribution of V is asymptotically normal. The mean is obviously zero and the

2 Lord is considering the generalizations of the R- and V-distributions to spaces of s
dimensions (cf. Watson [18], p. 420-421).
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TABLE 1
Values of Pg(r, 7) and Pg(r, 14) and several approximations
Pr(r, n) Approximation through terms in—
7 by
quadrature 0 l w1, 6 I 2 ‘ 7 “
n =717

0.12500 0.13312 0.12491 0.12497 0.12500 0.12530*
0.41782 0.43528 0.41882 0.41817 0.41819 0.41819
0.71404 0.72355 0.71448 0.71349 0.71337* 0.71305
0.90039 0.89830 0.90067 -0.90087 0.90082 0.90095
0.97864 0.97188 0.97752 0.97832 0.97846 0.97857
0.99788 0.99416 0.99753 0.99781 0.99785 0.99779
1.00000 0.99909 1.00023 1.00011 1.00006 1.00003

n =14

N Ok N~
Scoococo0oco

1.0 0.06667 0.06894 0.06665 0.06666 0.06667 0.06668
2.0 0.24193 0.24852* 0.24195 0.24192 0.24193* 0.24195*
3.0 0.46583 0.47421 | 0.46602 0.46583 0.46583 0.46583
4.0 0.67524 0.68109 0.67551 0.67525 0.67524 0.67521
5.0 0.83105 0.83232 0.83118 0.83107 0.83105 0.83104
6.0 0.92570 0.92357 0.92558 0.92570 0.92570 10.92571
7.0 0.97285 0.96980 0.97263 0.97283 0.97285 0.97286
8.0 0.99197 0.98966 0.99183 0.99195 0.99196 0.99196
9.0 0.99815 0.99693 0.99813 0.99815 0.99815 0.99814
10.0 0.99969 0.99921 0.99973 0.99970 0.99969 0.99969
11.0 0.99997 0.99982 1.00000 0.99997 0.99997 0.99997
12.0 1.00000 0.99997 1.00002 1.00000 1.00000 1.00000

* These values correct erroneous entries in Table 3 of [6].

variance is easily shown to be n/2. Horner [8] recapitulated these results and
gave (p. 153) the specific formulas:

dv
dpv(v, 1) = 1‘-(1—__-1-)—2)—1-/—2

®) dv K du
P0,9 =3 [ e e =

and showed that dPy(v, n) may be computed by convolving dPv(v, n — 1) with
dPy(v, 1). Lord [11], more generally, showed that dPy(v, n) may be computed
by convolving dPy(v, n — k) with dPy(v, k). Since Horner considered computa-
tion by convolution difficult, in which view we concur (see below), he derived a
modified Pearson series and employed it to estimate dPvy(v, 7). He evidently
-thought highly of this series approximation, since he used it as a standard against
which to test the simple normal approximation for n = 7, and he even considered
the normal approximation “very close.” Slack ([15], p. 77) considered the distri-
bution of V effectively normal “except when 7 is very small, i.e., <10.” We do
not share this optimism—though it is again a question of how many decimal
places in what section of the curve are required to render the fit “very close.”
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Horner did not present the modified Pearson series, and to our knowledge, no
one else has. We therefore derived the series according to the method described by
Lord ([13] p. 347), and we present it below, partly to support subsequent compu-
tations and partly because we think the term in n ™" may be useful. In this series,
the substitution z = »(2/n)"* makes the variance unity and simplifies the series
so that

@ dPy(o,n) = dz 3 6% (2)/(—2)'

1=0

Here, the notation
d"
n _ 1/2 22/2
#6) = (@0 e

conforms to the Harvard tables [7], which are probably the best means for
evaluating the series; and the ¢; are identical with those in Pearson’s series.
Integration of (7), term by term, gives Py(v, n).

To establish limits of error for (7) or its integral is a problem for which we have
found no simple, systematic solution. In the form given, (7) is a Gram-Charlier
series of Type A. Theorem 4 of Cramér [3] indicates that it converges absolutely
for n = 3, and its integral converges absolutely for all n. It is sometimes con-
venient to rearrange the terms of (7) in decreasing powers of n, yielding an
Edgeworth series. Theorems 2 and 3 of Cramér indicate that this Edgeworth
series and its integral through n™* is asymptotic with error O(n~*"). Finally, a
theorem by Esseen ([5], p. 43) establishes bounds to the discrepancy between
Py(v, n) and its normal approximation. But none of these facts seems to have any
great practical value. Esseen’s inequality indicates that

f #(t) dt — Py(v,n) | < 9.003n7 "%

—00

and this implies that a sample of some 10° observations is required to assure
three decimal accuracy. This, of course, is absurd, since the distribution of V is
symmetrical and the error is O(n™"), not O(n™"?). But no one, to our knowledge,
has worked out bounds for a symmetrical distribution. '

In hopes of setting reasonable bounds for the error in the series approxima-
tions, we proceeded to ascertain certain values of (2) and (3) that were fairly
easy to compute and to compare these with the approximations. The maximum
ordinate

dP,(0,n)/ dz = }r <T2-‘>2 fo " O @

was fairly easily calculated by quadratures with available equipment. To do this
job, a punched card table of the Bessel function J, was involuted and summed on
IBM machines. Then the sum was corrected for curvature at the upper end;
and when necessary, the portion of the integral lying outside the limits of the
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TABLE 2
Values of dPy(0, n)/dz and several approximations.
dP(0,n)/dz Approximation through terms in—
n by quad-
rature wl, gt n? %3 $8 8 o1 o12

.34948 | .37401 .37386 | .37418 .36477 .36831 .37582 .38110
.40637 | 38024 .38016 .38029 .37505 .37782 .38147 .38287
.37928 | .38398 .38393 .38400 .38066 .38273 .38475 .38515
.38947 | .38648 .38644 .38648 .38417 .38574 .38697 .38706
.38742 | .38826 .38823 .38825 .38656 .38779 .38859 | .38858
.39002 | .38959 .38957 .38959 .38829 .38928 .38983 .38979
.39048 | .39063 .39061 .39063 .38960 .39041 .39080 .39075
.39152 | .39146 .39145 .39146 .39063 .39130 .39159 .39154

O OO U W

—

punched card table was evaluated by integrating the asymptotic series for
[Jo]". As a check the involution and summation was repeated on an entirely
different series of IBM machines, and finally the integral

30.6346065
fo To(t) dt

.—that is, from 0 to ji—was compared with the value given by Watson ([18], p.
752) for half this integral.

From the comparisons given in Table 2, one sees that the term —g¢'(2)/16n,
which is the first correction term in either the Gram-Charlier or the Edgeworth
series, produces a substantial improvement over the simple normal approxima-
tion 0.39894. But the contribution of further terms is doubtful, to say the least.
This is particularly true of the Edgeworth series, since the error through n™* is
positive for odd n and negative for even % so that inclusion of one or more further
terms must improve half of the approximations at the expense of the other half.
In effect, it appears that the Edgeworth series either does not converge, or con-
verges to the wrong value, and that the Gram-Charlier series converges too slowly
to be of great use, if refinements over the first correction term are required.

Table 2 gives a fair notion of the accuracy of the series approximation through
n”!, since the error

| dPy(v,n)/ dz — ¢(2) + ¢'(2)/16n |

is bound to be large at v = 0; in fact, we are able to show that it achieves a
local maximum there forn = 5, 6, 7, 8, and 9. The first derivative of this error is
easily shown to be zero at » = 0. The second derivative

[ =L@ [ eusor cowai + @) - o'@/160]

reduces to

3 3/2 Lo
®) (—1)"[—}r ’—‘) [ enor @+ a - 15/16n>¢(0)]
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TABLE 3
Values of Py(v, 4) and several approximations
1 Approximation through terms in—
z = 97Q2/m)? (fu(;t’lgtl‘i!e appﬁzﬂ:ltion
1, g3 ] #s Py &7
1.6 0.94452 0.94520 | 0.94398 | 0.94367 | 0.94355 | 0.94460 | 0.94410
1.8 0.96404 0.96407 | 0.96460 | 0.96461 | 0.96454 | 0.96545 | 0.96500
2.0 0.97820 0.97725 | 0.97894 | 0.97921 | 0.97922 | 0.97978 | 0.97947
2.2 0.98821 0.98610 | 0.98834 | 0.98878 | 0.98886 | 0.98902 | 0.98889
2.4 0.99482 0.99180 | 0.99412 | 0.99460 | 0.99472 | 0.99456 | 0.99458
2.6 0.99860 0.99534 | 0.99741 | 0.99782 | 0.99794 | 0.99763 | 0.99773
2.8 0.99998 0.99744 | 0.99912 | 0.99940 | 0.99949 | 0.99916 | 0.99929
2.832 1.00000 0.99769 | 0.99929 | 0.99955 | 0.99963 | 0.99931 | 0.99944

for v = 0. The quantity on the right is easily evaluated, and we were able to
evaluate the Bessel-function integral by quadratures for n = 5, 7, 8, and 9; it is
infinite for » = 6. (8) is indeed negative for » = 5, 7, 8, and 9; thus the error
achieves a local maximum. For n = 6, (8) is negatively infinite.

Although convolution of the V-distribution is generally difficult, as Horner
indicates, values in the tail of dPy(v, 4)/ dv and Py(v, 4) are fairly easily ob-
tained with moderh computing equipment. We were able to evaluate (6) on the
Harvard Mark IV computer by means of Bronwin’s formula for numerical in-
tegration (cf. Whittaker and Robinson [19], p. 159) and then to obtain
dPy(v, 4)/ dv by quadrature. This operation was necessarily limited to the por-
tion of dPv(v, 4)/ dv unaffected by the singularity of dPv(v, 2)/ dv—that is, the
portion outside » = 2. Finally, hand integration of dPy(v, 4)/ dv produced values
of Py(v, 4) for comparison with the series approximations in Table 3. Here,
again, the first correction term effects a substantial improvement over the simple
normal approximation, but additional terms contribute little. Note that the
n~! term provides almost three-decimal accuracy.

4. Normalization of the V-distribution. The method of Cornish and Fisher [2]
(cf. Kendall [9], Secs. 6.32 and 6.33) provides the means of deriving an ap-
proximately normal variate y (with unit variance) as a series expansion in
z = v(2/n)""* and n. This series through n is

y=z+ (& — 32)/16n + (712" — 2242° — 152)/4608n’
+ (3852" — 13232° — 9812° + 15752)/73728n°.

It may be reverted to give z as a function of y, with the following result for terms
through n™%:

z =1y — (i = 3y)/16n — (17y° — 8y° — 177y)/4608n’
— (33y" + 165y° — 1989y + 999y)/73728n".

A series of this sort is of particular interest to statisticians for approximating
percentage points of a distribution. Table 4 compares various approximations

9)
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TABLE 4
Percentage points of P(v, 4) an several approximations

: A .. . h h e
P, 4) g 2= (/22 appii,;{un,’-.:lt on pproximation through terms in

! nl n? n3
.95 1.65010 1.64485 1.65242 1.65408 1.65496
.975 1.94862 1.95996 1.93419 1.93305 1.93402
.99 2.24588 2.32635 2.23868 2:22992 2.22977
.995 2.40712 2.57583 2.42953 2.41143 | 2.40886
.999 2.63436 3.09023 - 2.77399 2.71963 I 2.70274

derived from (9) with percentage points of Py(v, 4). The latter were obtained by
inverse interpolation of values of Py(v, 4), not all shown in Table 3. As with
previous comparisons, the term in n™" provides a substantial improvement over
the simple normal approximation; the terms in n~> and n™°, moreover, provide
additional improvement for the extreme points Py = 0.995 and 0.999. Even
with this improvement, however, accuracy is less than two decimals.

5. Other possible series for approximating R- and V-distributions. Bennett |1
has proposed the use of Fourier-Bessel series for computing the distribution of R
and Fourier sine series for V. We have not tested his claim that these series are
more effective than quadratures.

6. Conclusion. For very large n, Rayleigh’s approximation to the distribution
of the vector sum or the normal approximation to the distribution of a component
is clearly satisfactory. For very small n—less than 6 for the sum or less than 4 for
a component—neither approximation is remotely satisfactory; but convolution is
feasible even though laborious. For intermediate n, both the Rayleigh approx-
imation for the sum and the normal aPproximation for a component can be sub-
stantially improved by inclusion of ‘a single term in n™'; and the additional
computations are not excessive.

The inclusion of terms beyond n " appears, for the most part, not to be worth
the trouble. For small n the improvement is hardly noticeable; for larger n the
improvement may be appreciable, but it is probably not needed, since the n™
term will give fair accuracy by itself. However, the use of (9) to approximate
percentage points in the extreme tail may provide an exception.

As for accuracy, we believe that our series (7) through n™" affords a most un-
satisfactory approximation for » = 3, and a glance at Horner’s Fig. 7 should
convince anyone. For n = 4, we believe the approximations are still short of
satisfactory, and we suggest use of the exact values in Tables 3 and 4 whenever
these are appropriate. For n = 5, the approximation should be substantially
better than for n = 4; indeed, since dPy(0, 5)/ dz is approximated to within
0.00470 against 0.02613 for dPy(0, 4)/ dz, and since Py (v, 4) is approximated to
nearly three decimals in the tails, we surmise that Py(v, 5) is approximated to at
least three decimals, possibly approaching four in the tail.
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Note added in proof. We are embarrassed to find that the notation in this
paper disagrees with that in [6]. A table of concordance follows:

notation symbol in [6] symbol in this paper
”/n z z
v(2/n)t not used z
exponentially distributed transform of 2/n ¥ not used
normally distributed transform of »(2/n)} not used y
REFERENCES

[1] W. R. BenNETT, “Distribution of the sum of randomly phased components,” Quart.
Appl. Math., Vol. 5 (1947, i.e., January, 1948), pp. 385-393.
[2] E. A. Cornisa anD R. A. Fisner, “Moments and cumulants in the specification of dis-
tributions,”” Revue de I’Inst. Int. Stat., Vol. 5 (1937, i.e. January, 1938), pp. 307-
320.
[3] H. CraMER, “On the composition of elementary errors,” Skand. Aktuarietids., Vol. 11
(1928), pp. 13-74.
[4] A. ExnstriN, “Uber die von der molekularkinetischen Theorie der Wéirme geforderte
Bewegung von in ruhenden Flissigkeiten suspendierten Teilchen,” Ann. Physik,
‘Vol. 17 (1905), pp. 549-560.
[5] C. G. EsseEN, “Fourier analysis of distribution functions,” Acta Math., Vol. 77 (1945),
pp. 1-125.
[6] J. A. GREENWoOD AND D. DuranD, ‘“The distribution of length and components of the
sum of n random unit vectors,”’” Ann. Math. Stat., Vol. 26 (1955), pp. 233-246.
[7] Harvard University, Annals of the Computation Laboratory 23, Tables of the Error
Function and Its First Twenty Derivatives, Harvard University Press, Cambridge,
Mass., 1952.
[8] F. HORNER, ‘A problem on the summation of simple harmonic functions of the same
amplitude and frequency but of random phase,”” Philos. Mag., Vol. 37 (1946), pp.
. 145-162.
[9] M. G. KenpaLL, The Advanced Theory of Statistics, Vol. 1, Charles Griffin, London,
1943, Secs. 6.20 ff.
[10] J. C. KLUYVER, “A local probability problem,” Proc. Nederl. Akad. Wetensch., Vol. 8
(1906), pp. 341-350.
[11] R. D. Lorp, “A problem on random vectors,” Philos. Mag., Vol. 39 (1948), pp. 66-71.
[12] R. D. Lorp, “The use of the Hankel transform in statistics. I. General theory and
examples,’”’ Biometrika, Vol. 41 (1954), pp. 44-55.



986 DAVID DURAND AND J. ARTHUR GREENWOOD

[13] R. D. Lorp, ‘“The use of the Hankel transform in statistics. II. Methods of computa-
tion,” Biometrika, Vol. 41 (1954), pp. 344-350.

{14] K. PearsoNn, ‘“A mathematical theory of random migration,” Drapers Company
Research Memoirs, Biometric Series, No. 3, 1906.

[15] MARGARET SLAck, ‘“The probability distributions of sinusoidal oscillations combined
in random phase,” J. Inst. E. E., Vol. 93 (1946), Part 3, pp. 76-86.

[16] J. W. STrUTT, LorD RAYLEIGH, ‘“On the resultant of a large number of vibrations of the
same pitch and of arbitrary phase,’”” Philos. Mag., Vol. 10 (1880), pp. 73-78.

[17] J. W. StruTT, LOoRD RAYLEIGH, “On the problem of random vibrations and of random
flights in one, two, and three dimensions,”’ Philos. Mag., Vol. 37 (1919), pp. 321-
347.

(18] G. N. WarsoN, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Uni-
versity Press, 1944.

[19] E. T. WarTTAKER AND G. RoBINSON, The Calculus of Observations, 4th ed., Blackie and
Son, London, 1944.

[20] N. WiENER, ‘“The average of an analytic functional and the Brownian movement,”’
Proc. Nat. Acad. Sci. U.S.A., Vol. 7 (1921), pp. 294-298.



