THE KOLMOGOROV-SMIRNOV, CRAMER-VON MISES TESTS

D. A. DarLING'
University of Chicago, University of Michigan

1. Preface. This is an expository paper giving an account of the “‘goodness of
fit”’ test and the “two sample”’ test based on the empirical distribution function—
tests which were initiated by the four authors cited in the title. An attempt is
made here to give a fairly complete coverage of the history, development, present
status, and outstanding current problems related to these topics.

The reader is advised that the relative amount of space and emphasis allotted
to the various phases of the subject does not reflect necessarily their intrinsic
merit and importance, but rather the author’s personal interest and familiarity.
Also, for the sake of uniformity the notation of many of the writers quoted has
been altered so that when referring to the original papers it will be necessary to
check their nomenclature.

2. The empirical distribution function and the tests. Let X; , X,, ---, X, be
independent random variables (observations) each having the same distribution
function U(z) = Pr{X; < &} and put

1) @ ftzz0
. x) =
) 10 v <0
Then the (random) function
1 n
(2.2) Fo@) = - 2 e(w — X))
n j=1

is called the empirical distribution function of the data. Clearly F,(z) is the pro-
portion of the X;,¢ = 1,2, - -- , n, which are less than x.
It is easy to calculate the first and second order moments

E(F.(2)) = U(x),
Cov(Fa(z), Fuly)) = E(F.(2)F.(y)) — U@)U(y)

= o(U(), Uw)),

where

A

c(s, t) = min(s, f) — st =

s(1 — ) s
(1 — s) s =,
0<st=<1.

 We quote a few classical consequences of the definition (2.2):

(2.3)
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824 D. A. DARLING

Strong law of large numbers,
(2.4) F.(z) — U(x) with probability 1 for each z.
Law of the iterated logarithm,

— | Fu(x) — U(@) |
}.Telo Vi V2loglogn
with probability 1 for each z.
Multidimensional central limit theorem,

(2.5) {VAFu(z) — Uz))} i=12 -,k

has an asymptotic (n — oo, k fixed) k-dimensional normal distribution, means
0 and covariance ¢(U(x;), U(x;)) with c(s, £) given by (2.3).

Cantelli-Glivenko lemma ([29], [88]),
(2.6) sup |F.(x) — U(x)| -0  with probability 1.

—00 L T 0

The last result (2.6), which considerably generalizes (2.4), is itself capable of
further extensions. Fortet and Mourier [22] have shown 1/n > i, f(X,) —
E(f(X;)) uniformly with respect to an inclusive family of functions {f} with
probability 1. Then (2.6) follows on considering the family fi(x) = (¥ — z),
—ow < £ < oo, with e(z) given by (2.1). Steinhaus [79] showed that the mutual
independence of the X; could be relaxed to pairwise independence and (2.6)
holds. See also Wolfowitz [89].

The following two statistical problems motivate the analysis:

(a) Goodness-of-fit problem. Let the X; be the random variables described in
the first sentence of this section. The goodness-of-fit problem is to devise a test
of the hypothesis

(2.7) Hy:U(zx) = F(z),

where F(z) is a given continuous distribution function. This is one of the classical
problems of statistics for which K. Pearson developed the well known x* test—
cf. Cochran [15]. ‘

(b) Two-sample problem. Let the X; be as above with U(z) known to be con-
tinuous and let Y, ¥,, ---, Y, be independent random variables with the
common continuous distribution V(z) = Pr{Y; < z}, all n + m of these ran-
dom variables being mutually independent. The two-sample problem is to devise
a test of the hypothesis

(2.8) . HoeU) = V(z).

This is also an old, celebrated problem—cf. [53].

Roughly speaking, the tests proposed here of the null hypotheses Hy , H, o are
based on certain distribution analogues of the Cantelli-Glivenko lemma (2.6) in
the same way that the central limit theorem is a distribution analogue of the
law of large numbers.

VU@ = UE)
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3. The Cramér-Smirnov tests. In 1928 Cramér [13] suggested for H, the
following test criterion:

[ e - r@y ax,

where K (z) is suitable nondecreasing weight function. H, given by (2.7) is to be
rejected if this expression is too large. Von Mises [83] independently made an
equivalent suggestion and developed a few properties of the test.

Smirnov [71], [72] gave the modification

(3.1) Wi=mn f_ : (Fo(z) — F@)¥Y(F(z)) dF ().

where ¢(f), 0 < ¢ < 1, is a nonnegative weight function to be selected presum-
ably on the grounds of certain power requirements. The test based on W3 is
distribution free—this is readily seen from (2.2) for, if (2.7) is true, we have, re-

calling the continuity of F(x),

wi=a [ (L2 de— %) - @) v ar )
(3.2) 1 n 2
= (1 > et — F(X) ~ t) v dt,

n j
with probability 1, and since the F(X;) are independent and uniformly dis-
tributed over (0, 1) the result follows.
Besides being distribution free the test is consistent (if ¢ > 0) and requires no
arbitrary grouping of the data—these three desirable properties are not shared

by the x* test of H .
Smirnov’s basic result concerning the distribution of (3.1) if (2.7) is true is

that
(3.3) lim B{¢"™™) = (D(2ig)7,

n->0

where D()\) is the Fredholm determinant assceiatcd with the kernel
(34) k(s, 1) = $(s)p(D)c(s, 1), 0=sst=1,

¢(s, t) being given by (2.3).
Smirnov found the distribution function corresponding to this limiting char-
acteristic function in the following form [72]:
lim Pr {W3 < 2z} = G(2)

n-»0 '

' (35) . 1 i ( l)k—l Aok e—vul2

™ i reor V= y2D(y)’
where’ \;,j = 1,2, --- are the (simple) zeros of D(\). Later Smirnov [77] gave
simpler proofs of these results.

2 The factor (—1)¥1 is missing throughout [72].
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von Mises [84] deduced (3.3) and considered a number of extensive general-
izations in the direction of nonidentically distributed X;, and quadratic forms
other than the mean square.

There now exist quite simple proofs of (3.3) resting on a reduction to a simple
stochastic process, basically an idea of Doob [19] and Kac [42]. If we let F5(¢) be
the empirical distribution function based on F(X,), F(X,), ---, F(X,), then
from (3.2) we deduce that if

Ta(t) = Vn(Fr(t) — ), 0

A
IIA

1,
then
) 1
wh= [ 20w d
0

From the fact that (2.5) has a limiting multidimensional normal distribution,
xn() converges in distribution to a Gaussian process x(#) with mean 0 and co-
variance c(s, £) given by (2.3). If now Q(f) is a “reasonable” functional to the
reals it is natural to conjecture that
(3.6) Hm Pr {Q(z.(1) < z} = Pr {Q@®) < z}. -

This being true for Q(f) = [of*()¥(?) dt, Smirnov’s result (3.3) follows imme-
diately from a theorem of Kac and Siegert [41].

Kac [43] justified (3.6) for this @ when ¢ = 1, and Donsker [18] proved (3.6)

for a wide class of ¢. There now exist very extensive generalizations of this so-

called invariance principle ([66], [57]).
The essential result of the line of attack in [41] is that for 2(¢), a < ¢t £ b,

Gaussian,
E@) =0

Ti(z()z(s)) = T(s, 1),
the distribution of W2 = [%2%(t) dt is that of

0 G2
(37) >,

j=1 N\j
where Gy, G2, - - - are independent, normally distributed, means 0, variances 1,
and A1, Az, - -+ are the eigenvalues of the kernel I'(s, #)—i.e., the zeros of the

Fredholm determinant D(\) of the integral equation
b
f() = )\j T'(t, $)f(s) ds.

Tror the kernel (3.4), this result yields (3.3) immediately.

A systematic study of the limiting distribution of (3.1) was made in [1], and it
turns out that D(A) can be determined from an initial value equation. If ¥(¢) is
continuousin0 = ¢ £ 1, then

¢"(1) + W@®e() =0, 0) =0, £(0) =1,
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has a unique solution ¢)(¢) and the Fredholn determinant D(X) of (3.4) is

1)
D) = @_(_,
?’0(1)

For the important case ¢ = 1, the limiting characteristic function (3.3) is
(V2% csc v/ 2:£)!. This was inverted in [1] in a form different from (3.5) and a
table given of the limiting distribution of W . For the statistically appealing
weight, funetion

. 1

(3.8) Y(t) = =1’

the limiting characteristic function is v/ —2mi€[cos(3m(1 + 8i£)!)]™ which was
also inverted [1] and a few significance points given [2].

There is no multivariate analogue to the W test which is distribution free
(unless the components are independent). There is, however, a transformation
of a multivariate distribution to a uniform distribution over the unit cube due to
Lévy, and Rosenblatt [68] suggested an analogue to W2 for it and obtained [69]
a few results for the corresponding limiting distribution.

For H, of ( 2.8) a corresponding distribution free test exists—cf. Lehmann [53].
The natural analogue to (3.1) is

mn [T, _ 2, (nF, + me> <n11’,, + me>

m + n [-ao Ful@) — Gnl@) '/'( m 4+ n d m+n

where I7,(z) and G, (x) are respectively the empirical distribution functions of
the X’s and the Y’s. It is easy to prove when (4.4) below holds that this has the
same limiting distribution (if H, is true) as W2 of (3.1)—cf. [69] for the case
v =1

4. The Kolmogorov-Smirnov tests. In 1933 Kolmogorov [45] suggested a test
of Hy of (2.7) based on the statistic
4.1) K, =/n sup |F,(x) — F(z)]|;

—RLrL e

H, is to be rejected if K, is sufficiently large. The distribution of K, is inde-
pendent of F(z) if (2.7) is true (i.e., the test is distribution free) and denoting
its distribution by ®,(x) Kolmogorov proved that,

lim Pr {K, < 2} = lim &,(2) = &)
@2 U \ = o
' = 2. (=D, 0<a< .

J=—

If F(zx) is not continuous, Pr{K, < x} = ®.(z), so the test could be used con:
servatively even if the X, have not a continuous distribution. ,Smirnov [74] gave
a simpler proof of (4.2) and also a distribution free test of H, . He proved that
the random variable
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m sup | Fa(z) — Gu(2) |,

(4.3) Dun = "
m + N —w<z<0

with distribution function ®,, , had, if
(4.4) O<a§7£§b<oo, m-— o, n— «©,

a limiting distribution ® given by (4.2).
For the corresponding one-sided tests define

(4.5) Ki=+/n _sup (Fu(x) — F(x)),
(4.6) D}, = 1/ mnfn sup (Fa(x) — Gu(2)),
4.7 Dpn = 1/ mn—bfn sup (Gn(z) — F.(x)).

Smirnov ([74], [75]) gave limiting distributions of these random variables un-
der condition (4.4)

lim Pr{K} < 2} = lim Pr{D}, < 2}

4.8
(4.8) =1—6* 0=z < o,
lim Pr {D5. < @, Dun < y} = ®(z, y)
(4.9) =14 i: {2e—jz<z+y)2 _ 6—2(:‘a:+(j—1)y)2 _ 6—2(7'1/+(i—1)x)2},
1

02,0 < o,

The early work of Kolmogorov and Smirnov is summarized in [46] and [75]. A
short table of the distribution ® of (4.2) was given in [74] and amplified in [76].
Corrections to the tables are in [50], [51], and extensive percentage points in [65].

Wald and Wolfowitz ([85], [86]), in connection with a problem of finding con-
fidence limits for an unknown distribution function considered independently the
distribution of K, of (4.1), giving methods of calculating its distribution for
finite n. For elementary expository remarks and applications, cf. [39].

Feller [21] rederived (4.2). A strong counterpart of (4.2) was given by Chung
[12] who proved that infinitely many inequalities

sup V7| Fu(x) — F(z)| > \a,

—0LTL 0

occur with probability zero or one according as

Z 122 c—2hg

n

converges or diverges.
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Doob [19] showed that ® of (4.2) is given by
(4.10) ®(x) = Pr { sup |z(8)| < =z},
o<t

where z(f) is the Gaussian process of (3.6). Doob omitted the justification of
(3.6) for Q(f) = sup |f|, which was supplied by Donsker [18]. Doob observed
that the Gaussian process x(f) with mean 0 and covariance (2.3) was simply
transformable to the Wiener process w(f), 0 = £ < «, and that the probability
(4.10) is a simple first passage probability for that process. Similarly for the
limiting distributions of (4.3), (4.5), and (4.6).

- Using this last observation a generalization of the K, test was proposed [1] as
follows:
(4.11) K, = sup V| Fu(x) — F() | $(F(2),
where ¢ = 0 is a preassigned weight function. The limiting distribution of K}
can be obtained then as the solution to a boundary value problem associated
with the simple diffusion equation. If ¢(f) = (af + 8)' in a piecewise way the
classical methods give the limiting distribution in quadratures; [1].

These latter include the case of detecting discrepancies over a central portion

of the interval ([1], [55], [36]) where
{1 a<t<b
(4.12) hat) = ,
0 otherwise,
and over the tails 1 — ¢,(¢), (4], and the cases y» = 1/t, ¢ = 1/(1 — ¢) for ¢ in
a subinterval of (0, 1); see [67], [11], and [54]—cf. also [27].

For /¢ where ¢ is given by (3.8), the distribution of K’ was given in [1]; and
when m = n — o, the limiting distribution of D,.. of (4.3) has been treated
[52] analogously with the weight function ¢, of (4.12).

Interest of late has been in calculating the distribution of these random vari-
ables for finite sample sizes (always under the assumption that Ho, H, of (2.7)
and (2.8) are true). In [85] a method of calculating the distribution of K, of
(4.1) was given, applicable when = is small. A series of recurrence relations were
given in [45) for calculating the distribution of K, , and it was suggested much
later [5] that these may be amenable to high-speed calculation—the program
was subsequently carried out ([58], [7]) giving tables of the distribution of (4.1).
For D} similarly, cf. [80].

Birnbaum and Tingey [6] proved that for (4.5)

o\ n—j & j—L

Pr{K} =(1—e) <’?)<1— —l) ( Z> :
r{ >e\/7—b} ( €) +el§j_s_;(l——e) ; =3 e+n

Gnedenko and his students have recently studied systematically (4.3), (4.5),

(4.6), and (4.7), mainly in the case of equal sample sizes m = n. We abbreviate

in this case D, = D, , D}, = Df, D7, = D; . The distribution of D, , D} and

D7, can be reduced to first passage problems associated with simple random walks
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[30], [32], [34], and [47]. Consider, e.g., the distribution of D} . If the pooled.
sample of size 2n, X, , X3, -+, Xa, Y1, -+, ¥, , isarranged in increasing mag-
niiude and we denote by z;,7 = 1, 2, -- -, 2n a random variable equal to +1 or
—1 according as the 7th member of it is an X or ¥ respectively, then if Hy of
2.8)istrueand S; =21+ 2+ - + 2;, (So = 0),
Pr {D} < z} = Pr{ max S; < xv/2n}.
1<i<2n

The set So, S1, -+, S = 0 form a Markov chain, and the probability in ques--
tion is given by a simple reflection principle [3]. One obtains in fact

2n )
Pr{D} <a} =1 —<”+[‘x =l 0§x§1/1’,
2n) 2
n
and similar simple formulas for the distributions of D, and the joint distribution
of D} and Dy, for finite n.

There exist many other results in this direction, too numerous to treat in de-
tail; we mention several of the simpler in their limiting form:

lim \/2n Pr{DZ + D, = —2-—1; [z\/'%]}

n->w

8 Y (45 — 3797, 0 <2< =™,

j=1

cf. [35], [38];

. 4 -__21r2—31r—12__,,
],.‘1—1)2 p(Dn y Dn) = —-m— = .b')47,

cf. [34];

lim Pr {F.(x) > G.(z) for all z such that « < U(z) < B} = lsin"l o1 — ) ,
n->® ™ B(l - (X)
of. [37), [24], and [70]; where p is the correlation coefficient and U(x) the com-
mon distribution of the X; and Y ;. Much of the work of Gnedenko and his co-
workers is summarized in [37] and [38].

The random walk method of treating D7, D, was employed independently in
[20], and tables of the distribution of D, were constructed ([61], [62]), for finite
n using methods unrelated to the above.

- For unequal sample sizes, the distributions of Dy np, DY .., p integral, can
be again reduced to a random walk problem ([48], [49], [10]) of a somewhat more
complex kind, but still amenable to the reflection principle.

The exact formulas lead to asymptotic expansions of Kt K., D%, D, of
which (4.2), (4.8), (4.9) are the leading terms—but Smirnov’s original analysis
required only (4.4) to hold for D7, , D, rather than equal sample sizes m = n.
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b. Other tests. Besides the tests described in the preceding two sections, there
are a number of others based on the behavior of the empirical distribution func-
tion.

Smirnov [73] discussed the number of crossings N, of F.(x) and F(x). If (2.7)
is true he proved that

lim Pr {N, < tv/n} =1 — ¢

and gave generalizations. The distribution of the number of crossings of Fa.(x)
and G,(z) is known [64] for m = n finite.

For the case of two samples of size n, m = np respectively, p = 1 in-
tegral, Gnedenko and Mihalavi¢ ([31], [36]) proved that if J is the number of

“positive jumps” of F,.(x)—i.e., the number of X,k = 1,2, --- , m such that
Fo.(Xy —0) = (k — 1)/m = G.(X;)—then J has the simple distribution
. 1 .
Pr{J'—J}—m, J=0,1,---,m.

From this last result it follows (letting p — ) that if A, is the sum of the
vertical parts of the graph of F,(x) which exceed F(z)—i.e.,

s [ ua) — P@)ePE) — F@) dFa),

where e(x) is given by (2.1)—then A, is uniformly distributed over (0, 1)
Pr {A, <z} =, 0sz=1

The limiting form of this theorem was found earlier by Kac [42], who also
gave a general method for finding the limiting distribution of

[ v - p@y) ar),

for quite general functions V. Kac also considers the statistic corresponding to
K., of (4.8) when the sample size 7 is chosen at random with a Poisson distribu-
tion whose parameter goes to infinity.

Smirnov [78] considered using F,(x) to construct confidence limits, not for
U(x), but for its density by using a statistic similar to K, .

The effect of grouping the data on the tests has been discussed for the D, ,
D} tests in [24], [25], and [28]; the K., K, tests in [40], [23], and [33]; and the
W7, test in [87].

6. The parametric case. The two null hypotheses Hy, Ho of (2.7) and (2.8)
are simple, and it is desirable to extend the tests to composite null hypotheses
[14]. Some attention has been given to this problem lately for the hypothesis H, .

We suppose, instead of (2.7),

6.1) Hy:U(z) = F(z, 0), 0¢80,
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where the parameter 6 ranges over a set 6. For the case when © consists of an
interval of the reals, a < 6 < b, a test of Hy analogous to W5 of (3.1) was in-
troduced in [16]:

62) ¢t =n [ (P@) — P, 0 aF(z, ),

where 6, is an estimator of 6. Hy is to be rejected if C? is sufficiently large. The
chief result here [16] is that, under suitable regularity conditions, if Var (8,) goes
to zero suﬂiclently rapidly (the superefficient case), the limiting distributions of
C% and W (with ¢ = 1in (3.1)) are the same, and if 8 admits a “regular esti-
mator” 6, , then the limiting distribution of C% is that of [34°(¢) dt, where y(Z)
is a Gaussian process with mean 0 and covariance

(6.3) k(s, 1) = (s, ) — o(s)e(t),
with ¢(s, 1) given by (2.3) and

o(F(z,0)) = lim v/n Var (§.) 565 F(z,9),

6., being an asymptotically unbiased minimum variance estimator. The limiting
distribution of CZ% is then given by (3.5) for D(A) the Fredholm determinant of
the kernel (6.3).

The test criterion C% of (6.2) is in its limiting form not generally distribution
free—i.e., the limiting distribution of (6.2), if (6.1) is true, depends in general
on the true unknown value of 8 and the structure of the famlly F(z, 8), unlike
the W2 test of (2.7). In the important special cases where 6 is a location, scale,
or exponential parameter, the limiting distribution is independent of the par-
ticular value of 6 obtaining, which makes the test usable.

We quote one result: Let

F(x,0)=%+7lrtan"’(x-—0), —w <z < w, —owo << 0;

i.e., we want to test if a sample of data came from some Cauchy distribution with
unspecified median. Then [16]

sin v/A ar Y
D) = \/‘_( + (w R >\> (1 = cos V),
and the limiting distribution of (6.2) is that of (3.7), where the A; are the zeros
of this D()A).

" In [44] the case where F (x, 6) is a normal family with unknown mean and vari-
ance is treated in some detail, similar to the above analysis, and important power
comparisons with the classical x* test were made (cf. Sec. 7). In [26] the problem
was treated from a different viewpoint, with grouped data using an analogue of
the K, test of (4.1) and under a condition that the normalized estimator con-
verged to a fixed value.
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,There seem to be no results for finite sample sizes, or a corresponding test of
Hy , or a direct analogue of the K, test. And there does not seem to be a single
example where the limiting distribution of C% is known in a reasonable analytic
form.

7. Power of the tests. In the research quoted thus far, the principal effort has
been to obtain distributions and limiting distributions under the null hypotheses,
with occasional fleeting and unsystematic remarks on the power of the tests.
This important facet of the problem has only lately been studied and the results
are still quite fragmentary concerning the optimum choice and relative power of
the tests.

The choices of the weight functions (3.8), (4.12), etc., were made on more or
less intuitive grounds to maximize the power of the tests against a rather vaguely
defined class of alternatives; and indeed not only for the present tests but with
other related distribution free tests (Wilecoxon, run, ranking, sign tests, etc.),
there are fundamental and as-yet-unsolved problems as to delineating the classes
of alternate hypotheses and of establishing realistic power comparisons.

Massey ([59], [63]) showed that the K, test was consistent and biased, and he
gave a lower bound for the power. Birnbaum [9] considered the K7, test of (4.5)
and a class of alternate hypotheses to (2.7) of the form

sup (U(zx) — F(z)) =3,
—0 LT W
and obtained best possible upper and lower bounds for the power for finite n,
and for n — o« . The power of the D, test of (4.3) was compared with the x*
test [60], and in the case of a normal family with unknown mean and variance,
the €7 test of (6.2) was found [44] to have considerable power advantage over
the x° test for alternatives to (2.7) of the form

7.) [ W@ - ray ae 2,
(7.2) sup |U) — F(x)| = 6
—0LZTLN

For example [44], when the class of alternatives (7.1) is considered for § suffi-
ciently small, the size of the test being <1, if it takes a sample size N for the x°
test to achieve a minimum power % against all alternatives (7.1), then the C’,
test with the same size will need asymptotically only «N*? observations to attain
the same minimum power. Similar remarks hold for the alternatives (7.2) with
a parametric extension of the K, test.

The asymptotic power of the tests of Hy of (2.7) can be studied by considering,
e.g., alternatives to (2.7) of the form

(7.3) Ulx) = Flz) + \—1[; G(),
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where G(z) is a specified function, and the merits of the various tests can be
compared by considering the limiting probabilities with which (2.7) is rejected
if (7.3) is true; and if the asymptotically most powerful test of (2.7) against (7.3)
exists (and is known), one has the concept of asymptotic efficiency against the
sequence of alternatives (7.3).

In the case of a normal distribution with mean 0 and variance 1, the alterna-
tives being normal distributions with means 6, variances 1, § # 0, the known
uniformly most powerful unbiased test of (2.7) was compared with the K, test
of (4.1) in [54], with the K, test showing up fairly poorly, as might be expected.
For the W7, test (with ¢ = 1), the limiting distribution of (3.1) when (7.3) is true
has been found under certain regularity conditions on F(x), G(z) by T. W.
Anderson®, and is that of

(74) ]0 () — k()] du,

where z(u), 0 < u =< 1, is a Gaussian process mean 0, covariance c(s, £) of (2.3),
and k(u) is a certain function depending on F(x) and G(z). The distribution of
(7.4) can be studied by methods similar to those in Sec. 3.

Alternatives to Hq of (2.8) of the form U(z) = V*(x), k = 2, 3, - - - have been
investigated ([53], [82]) and power comparisons made for a number of tests in-
cluding the D, test of (4.3).

For very small sample sizes, the exact distributions of K, , K%, D, D7,
can be computed by brute force when Hy , Hy are not necessarily true; and there
has been some recent work of rather special character on their power. If F(z) is
normal mean 0, variance 1, and U(z) is normal mean g > 0, variance 1, the K},
test of (4.5), n = 2, 3, 5 has been compared [81] with the classical uniformly
most powerful test. For U(z), V(z) normal, different means, variance o°, the test of
H, has similarly been investigated: ¢ known [17], ¢* unknown [82], and com-
parisons have been made with various other distribution-free tests. The K, and
Dy tests do not perform exceptionally well, as might be surmised, and for in-
creasing m, n, their relative power is conjectured [81] to decrease.

Of course, essentially nothing in the way of an absolute judgement of the
merits of the tests can be attained by such studies, since the alternatives against
which the tests described here are supposed to have good power have little re-
lation to the above alternatives against which the classical tests have maximum
power.
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