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Table II gives the confidence v that 100 P percent of the population lies
between the largest and smallest of a random sample of n.

In the case where we are dealing with a multivariate population, we take m
to be the number of blocks (See Tukey [8]) excluded from the tolerance region.
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NONPARAMETRIC ESTIMATION OF SAMPLE PERCENTAGE
POINT STANDARD DEVIATION

By Joun E. WaLsu

Military Operations Research Division, Lockheed Aircraft Corporation, Burbank,
California

1. Summary. The available data consists of a random sample z(1) < --- <
z(n) from a reasonably well-behaved continuous statistical population. The
problem is to estimate the standard deviation of a specified z(r) that is not in
the tails of the sample. The estimates examined are of the form

alz(r + 7) — z(r — 17)]

and the explicit problem consists of determining suitable values for a and 1.
The seolution

a= @0+ D0/0+ DL — /(0 + DI 6 = (0 + DY
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appears to be satisfactory. Then the expected value of the estimate equals the
standard deviation of z(r) plus O(n~*""); also the standard deviation of this
estimate is O(n~*"). That is, the fixed and random errors for this point esti-
mate are of the same order of magnitude with respect to n. Solutions can be
obtained which decrease the order of one of thesé types of error. However,
these solutions increase the order of the other type of error, so that the over-
all error magnitude exceeds O(n~"'").

2. Introduction and results. A sample percentage point x(r) furnishes a point
estimate of the corresponding population percentage point 6[r/(n + 1)], where
0(p) = 0[p] represents the 100p percent point of the population sampled. The
appropriateness of z(r) as an estimate depends on its variability. Thus an esti-
mate of the standard deviation of z(r) can be of value. This paper presents an
easily computed nonparametric estimate of the standard deviation of z(r) that
is valid for most continuous populations of practical interest and has favorable
properties compared to other estimates of the same type.

The estimate derived is based on the results of [1]. The expected Va.lue and
variance-covariance expansions of (1] are assumed to be valid for the continu-
ous statistical population sampled. In particular, this population is assumed
to have a probability density function that is analytic and nonzero at all points
of interest. These requirements appear to be satisfied for most practical situa-
tions that involve continuous populations.

The derived estimate properties are approximate in the sense that terms of
specified orders of n are neglected. The order results stated are not applicable
for the case of extreme observations. That is, p, = r/(n + 1) and ¢, = 1 — p,
are assumed to be bounded away from 0 and 1. Also a standard deviation esti-
mate is not necessarily reasonably accurate even for situations where the order
relations are valid. In some cases the neglected terms may be important even
though they are of the stated order with respect to n. For many commonly en-
countered types of populations (unimodal, etc.), the importance of the neglected
terms tends to increase as p. deviates from %. Examination of the expansions
used in the derivations suggests that the standard deviation estimates presented
are uvsually satisfactory if

pgr(n + 1) = 3.

This relation implies that the magnitude of the increments with respect to
which the final expansions are made never, exceeds (3)p.g. .

Let o{w} denote the population standard deviation of w. The statistic ad-
vocated for estimating o{z(r)} is

sle(] = 3 + 17"V pg lalr + (0 + D] = 2fr — (o + DY},
where z[z] = z (largest integer contained in z). This statistic has the properties
Efslz(n)]} = ofz(r)} + 0n™"™)
o{z(r)}1 + 0(n~*")),
ofslz(]} = 0@™™).
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The statistic s[z(r)] has the smallest order error of all expected value estimates
of o{z(r)} that are of the form a[z(r + %) — z(r — 7)], where % is o(n). Here
the order of the error of an estimate is considered to be the larger of the order
of E(estimate) — o{z(r)} and the order of s{estimate}.

The notation f[z] is used to represent the probability density function of the
population sampled. For the situation considered,

o{z(r)} = Vpg./Vn + 1110(p)] + 0(n™").

This relation shows that a modification of s[z(r)] can be used in estimating the
value of the density function at the point x = 6(p,). Explicitly,

V'n F Tsle()]/V P

furnishes an expected value estimate of 1/f[8(p,)] that is accurate to terms of
—2/5

order n
3. Derivations. This section contains a verification of the properties stated
for s[z(r)] in the preceding sections.
Consider any integer ¢ such that 1 < ¢ < n. From the results of [1],

- _ D q: f'[6(py)] —2
m Bl =000 = o prttpor T 00

of{z®} = V'pra./Vn + 1f6®@)] + On™*).

Here p, = ¢/(n + 1) and ¢. = 1 — p,. These expansions, combined with ap-
propriate use of Taylor series expansions, form the basis for the derivations.

Let © = e(n 4+ 1)* = integer, where 0 < a < 1 and both e and « are 0(1).
Using (1) and expanding around r in Taylor series,

Elz(r + 4)] = 6(p,) + 4P Jf’[O(pr)]

(n + DfTo(p)] [(n + D 2(n + 2) ] flo(p)?
+ O(n—3+3a) + O(n-2+a)

_ ¢ _l: € L _pg Jf’[o(pr)]
(n + 1)*==f[0(p,)] (n + D*% ° 2(n + 2) ] fl6(p)]e

+ O(n—3+3a) + O(n—2+a)

Elz(r — 2)] = 6(p,)

2ae

~ (¥ D)
a{a[x(r + 1) bl x(r —_ ’L)]} = a\/z—e/(n + 1)1_a/2f[0(pr)] + O(an-—3/2+a)'

The problem is to use these relations to determine suithble values for e, a,
and a,
Since a[z(r + ¢) — z(r — )] is an expected value estimate of o{z(r)},

2(16/(’": + 1)1_“ = '\/;;—q—r/ (n —+ 1)1/2’ or g = (1/26)‘\/17@.(’” + 1)1/2—41.

Ef{alz(r + 7) — z(r — 2)]} + 0(an™*"*) + O(an™2™)
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Using this expression for a,
Efalz(r + 1) — 2z(r — 9]} = ofz(r)} + 0@ 4+ 0(n™""?)
alalz(r + i) — z(r — 0)]} = O(n™*"*%),
Thus increasing o decreases the order of magnitude of
olalz(r + 7) — z(r — 9},
but increases the order of
E{a[z(r + 2) — z(r — )]} — ofz(r)}.
Hence the order of the error is minimized when
—1/2 — a/2 = —5/2 + 2a.

Thus a = 4/5 appears to be the most desirable choice for a.

In ofalz(r + ©) — x(r — %)]}, the parameter e appears predominantly as the
factor 1/+/¢. In E{afz(r + i) — z(r — ©)]} — o{xz(r)} the predominant factor
is €. Solution of the equation

ez=1/\/;

suggests that ¢ = 1 is an appropriate compromise choice for .
Use of @ = 4/5, ¢ = 1, and the expression for a yields the results

i=@m+ DY a=3i0+ )7V,
and verifies the properties stated for s[z(r)].
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A UNIQUENESS PROPERTY NOT ENJOYED BY THE NORMAL
DISTRIBUTION

By GeorGge P. STECK
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1. Summary. It is well known thatif X and ¥ (or1/X and 1/Y) are independ-
ently normally distributed with mean zero and variance o, then X/Y has a
Cauchy distribution. It is the purpose of this note to show that the converse
statement is not true. That is, the fact that the ratio of two independent, identi-
cally distributed, random variables X and ¥ follows a Cauchy distribution is
not sufficient to imply that X and ¥ (or 1/X and 1/Y) are normally distributed.
This will be shown by exhibiting several counterexamples.
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