ON THE KOLMOGOROV AND SMIRNOV LIMIT THEOREMS FOR
DISCONTINUOUS DISTRIBUTION FUNCTIONS

By Paur Scamip
Swiss Forest Research Institute and Federal Institute of Technology

1. Introduction. Let X;, X,, ..., X» be N independent random variables
with the same distribution function F(z). Sy(x) is the empirical distribution
function, i.e., Sy(z) = k/N if exactly k of the N values X; are less than or equal
to . It is of theoretical and practical interest to analyze the behavior of the
statistics

sup |Sx(z) — F()| - N?

—0 LT <0
and
sup (Sx(z) — F(z)) - N*.

—0 LT 0

Kolmogorov [12] proved in a famous paper in 1933 that for A > 0

. +00
I }}m Pl sup |Sw(z) — F(x)| - N <\ = kz (—1)kg 2"

50  —0LzT L0 =—00
if F(x) is a continuous distribution function. Smirnov [21] obtained a similar
result in 1939, when he showed that :

II lim P sup (Sy(z) — F@@) - N' <A =1 - ™
-»00 —00 Lz L0
holds for continuous distribution functions F(z).

Kolmogorov converts in his proof to a generalization of the Central Limit
theorem, whereas Smirnov’s theorem was a corollary to a more intricate theorem.
But the two formulae can be proved by reciprocal methods. They have also been
proved by Feller [11] and by Doob [10] and Donsker [9]. Feller made use of
characteristic functions and Doob employed stochastic processes. Smirnov
[22] found in 1944 the first terms of the asymptotic expansion for the probability
in IT and an exact formula for finite N. Chung [7] and Blackman [5], [6] were
successful in finding the asymptotic expansion for the probability in I.

A somewhat more general - form of the statistics, namely

sup | S(z) — F(z)| N* - o(F(a)),

~0 <z L0

where ¢(y) is a positive definite weight function, was discussed by Anderson and
Darling [1]. They found the limit distributions for some special weight functions,
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1012 PAUL SCHMID

by means of stochastic processes. Similar results were obtained by Maniya [16]
and Malmquist [15]. Rényi [19], in 1953, established the relations

. Sx(x) — F(z) 3 ]

1 IS AR o N

lim P L;‘i%) @) V<A
II1 2 24

) exp[_(zk + 1’71 2a]
_4 3 (1) 8 a\
T k=0 2k 4+ 1

and

Aea/ (1—a)]}
Iv limP[ sup (S”(‘”) F (”)) N < x] 1/ f e
N->co a< F(z) F( )

where F(x) is a continuous distribution function, @ > 0, A > 0.

The statistics treated here are well suited to test if a sample comes from a
population with the distribution function F(z). These test functions have the
great advantage in that their distributions are independent of the distribution
F(z) of the population. Massey [17], Birnbaum [2], and Malmquist [15] investi-
gated the power of the statistics of Kolmogorov and Smirnov. The limit dis-
tributions of these statistics have been tabulated by Smirnov [23], and the dis-
tribution for finite N by Massey [18], Birnbaum and Tingey [3], [4]. Rényi
tabulated his own limit distributions. Hence, today it is practicable to use these
statistics.

In this paper Theorems I through IV are extended for the case of discontinuous
distribution functions F(z). The probabilities in question converge also in this
case, but the limit distributions are no longer independent of #(z). They depend
on the values of F(z) at the discontinuity points, but not on the form of the
function between the points of discontinuity. Theorems 1 and 2 are proved by a
generalization of the method of Kolmogorov. They can also be proved with the
help of stochastic processes, as Doob did it for the case of continuous F(x). We
bypass representation of this method since it involves techniques similar to those
of Anderson and Darling. The proofs of Theorems 3 and 4 follow in part the
methods applied by Rényi, but also make use of the generalization by Kolmo-
gorov of the Central Limit theorem. A part of these results has already been
published [20].

I should like to thank W. Saxer for suggesting this topic.

2. Extension of the limit theorems of Kolmogorov and Smirnov. Let F(z) be a
distribution function continuous for x < z, , where F(z, — 0) = fo1, F(2)) = fo
forv =1,2,---,n, and fauy1 = 1. Denote the corresponding empirical distribu-
tion function by Sx(z).

TareoreM 1. If X > 0, then
1) lim P[ sup |Sy(z) — F(z)| < AN1] = &),

N->w —00 LT L0

(2) ‘b()\) Z ( 1)1.: —oN22 f f exp [__2]; 2Zn Aij Z; Ivj] dxry -+ dxon ,
Gk,

| —, i,J=1
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where
f.1+1 - f:—l -1
Ay = Ay = Aoy =
T P = = ) S T A
A =0, for 1<j—1 or 2>j+1,
2n+1
c=@2m)™" ,IIl (f; — f-07?
and
+eo
G. = U {—>\ < Zo + 2)\(17» + kfw—l) <A

pl'pz'ocn'p”=—w
—A<x2v+2)\(p"+kf2v)<)‘) v = 17"':"'}'
THEOREM 2. If A > 0, then

3 hm P[ sup. (Sw(z) — F(z)) < AN = &*(n),
(4) lim P{_sup (F(z) — 8u(x)) < AV = @),
N-»>o0 0Lz

+ —3 — k_zxzkz . e : — . - . e 0
5) <I>()\)—k§( 1)% cf fazexp[ 2;_: A;,x,x,]dn dzsn

where
1

Gi= U [—o < (=1)"@pa + 2k - fas) + 2p, < A,

D1yt D=0
—o < (=120 + 2Mkf2s) + 20p, <N, v =1,---,n}.

For A = 0 all limits are 0. The convergence is uniform in A in all cases.

If the number of jumps of F(z) is countably infinite, a further limit process has
to be made in which at first only the highest jumps of F(x) are taken into ac-
count. The two limit processes can be interchanged, because (\) and &*(\) are
continuous functions of the values of F(x) at the points of discontinuity. Hence
further difficulties do not arise in this, the most general case. We will prove
Theorem 1 for the case of a distribution function for which the inequalities

f2v+l>f2v, V=0’1,-..’n’

are valid. The results must then hold for any distribution function with » jumps,
because both sides of (1) depend continuously on the f’s.

If the random variable X has the distribution function F(z), then ¥ = F(X) is
also a random variable, the distribution of which has to fulfill

PIF(X) = 0] =0, PIF(X) z 1] = 0, Plfo 1 = F(X) <fa] =0
and, for foo < ¥y = foy1, ,
PIF(X) Syl=PIX < F\(»)] = FF () = y.
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Furthermore, since
PIF(X) = fu] = PIX = &) = fo — fo,

Y will have the distribution function

0, fory = 0,

_ )y forf2v§y§f2y+1, ll-'=0,1,---,’n,

(6) Fy) = vt 5 forfo 1 =y<fu, v=12---,n,
1, fory = 1.

Let Sx(y) be the empirical distribution function corresponding to F°(y). Then
we have, for fo, £ F(z) < foria,

Sy(F(z)) = j\l—, (Number of F(X,), F(X;) £ F(z))
= % (Number of X;,X; £ z) = Sy(®)

and F°(F(z)) = F(z). Hence
sup |Sy(z) — F(z)| =_w21:;<)w |S¥(z) — F'(z) |,

—00 LT <0
because the other values of F(x) cannot be attained. If we denote by I the union
of the closed intervals [f2, , faoq1l, v = 0, 1, - - - , m, we obtain
(7) Pl sup |Sw(x) — F(x)| < \N = Plsup | Sx(x) — z| < AN

—00 LT zel

Denote by My the set of integers j such that j/Nel,
(8) MN= {’Co=0,1,"',k1;k2,k2+1,"',’03;
et ;an,k2n+1;"‘;k2n+l=N}-

The k; are defined such that k;/N — f;, as N — . We wish to analyze the

behavior of
o (L) - 4 }
2 (3) -1 <w]
when N — .
The event &4 , k ¢ My, happens if simultaneously all inequalities

o (L) - L
s(5)-4

and the equality

9 p [max

jeMy

< AN for j<k jeMy,

o [k E_ <
SN(}V)‘N—N

are fulfilled. Py is the probability of & . Poy is equal to the probability in (9).
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We can calculate the Py recursively by means of the initial conditions Py = 1,
Py = 0 for ¢ # 0, and the equations

Pijp = E P P[8; 141|852 ]
J

_ 0 k + 1 _ 0} k
(10) = m;m Py P [SN ( ¥ S (N>
_i—it1|e (E) - ’C_ﬂ]
N Y \N N |

forkeMy,k+1eMy,and
Pi k2y = Z PJ kay—1 P[gz kay 18‘ k2r—l]
7

— . 0 -k—Z_v _ 0 kZV—l
() h |ﬂz<:m! Firs o P [SN (N) Sv ( N )
- T — 3+ ko — kovs S° (k2,_1> — J+ k2v—l]
N "\'N N P
forv=1,.---,m.

The occurring conditional probabilities give

of(k+1\ (k) _<t—j+1 o (kY _k+
P[S”<N> S”(N)‘ N S”(N)“ N]

J
_ <N ___ k _j ( 1 >i—j+1 (N k — I)N—lc—i—l
“\i—-j+1)\VN =% N —k ’

forkeMy,k+ 1eMy,and
o (ko) _ o (ko) _ ¢ — 3+ ke — kaa| o (2 _ ko -I-j]
pls () - st (ha) - L st () < Bt 1

(12)

(13) N = ks — j Ty — Fny \ R N )N—kg,—i
B (7' - .7 + k2v - er—l)(N - ka—l) (N i k2p_l ’
forv = 1, - -+, n, according to the laws of the binomial distribution.
The recursion formulae can be simplified if we introduce the new terms
N — — N\
(14) Qix NN =k — 9! Py.

T NI(N — k) +igh
Now we have

Qu=1 Q=0 fori=0; Qu=0, for|i| = \N}

= 1 -1
Qirn = |f|§~’ i G—7+D1°°

fork e Myand k 4+ 1 & My ; [i| < AN?,

E (k2 _ k2 l)i—k+k2y—kzy—l
15 ikyy = I Ty
(15) Qura 1wt Qikars G =+ ko — ko)l
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for v = 1, ---, n, and for the probability (9) we obtain

Nie¥
N~

For finite N, Pyy is evaluable, but as N — « the number of necessary recursion

steps tends to infinity.
Let Y;,j € My, be independent random variables with the distributions

(16) PoN = Qozv.

(17) P[YJ=%§'—V‘§—1]=£_6) i=0)1’2:"';j¢k/297
i - ka + k2v—1 (kflv - kflv—l)i .
(18) P[Ykz. = \N? :, = Tilekrke—1 ? =012 ---.
Then
E(Y;) =0,
1 N k2v - kv—
E(Y) = g5 §% ks B(Vh,) = 25e™,

s 2\ 1 . ) 3 8 (ke — ko)
B0v, ) = (14 2) s ks BT 1)~ /Bl S e)
The event D , k € My , take place if the inequalities

> 1] <1

=i

for all j < k and the equality

)
27w
are simultaneously fulfilled. The probability of D is Rix , Reo = 1, B = 0 for
1 # 0.
We can easily verify that the recursion formulae for the B are the same as for
the @y . Therefore,

(19) Ry = Qu,

for all 7 and k. For the probability in (9) we obtain
| N

(20) PON = N]V'ff RON-

We can evaluate Ry in 2n + 1 recursion steps from

Ry = 1, Ry = 0, for 7 = 0,

(21) R‘”‘M-H = lil%N’ Rikzv P[SD’isz—l l SDikzy]) v = 0» P (%
i—j+koy—koy—
oo — ko ~1)1 Jtkgy—kgy—1
Ra,, = Rty (." - v=1 n
Wy |j|<)\N‘ P2y —1 (z — .7 + kzy — kzy_j)!ek“_k“_‘ ) ’ ’
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These conditional probabilities can be written in the form

!
PlDiy,,; | Diy,] = P[—l J < z Y, <1-— J

TN L ANY
(22) kg +1 . . .
_ ) 2v+1 _i—7
l = kzv + 1’ ct 0y k2v+1,’ ,-,],Zz;-‘.l Yr = W] )
and their limits for N — « can be obtained by the following lemma of Kolmo-
gorov.

Lemma, [12]. Let Y, -+, Yiamy be, for each M, independent random vari-
ables, whose values are multiples of € = (M), with
E(Yu;) =0, E(Y%) =2bui, E(Yul’) = du;.
Let a and b be two numbers such that a < 0 and b > 0. Assume the existence of
positive numbers A, --- , E, such that, for all M, the inequalities (i) through (iv)
are fulfilled:

my
() A < Z;bu,- < B,
1-=

Gi) B < Ce, for all j,
Mj
(lii) P[YMJ' = lujé] > D and P[Yuj = (luj + 1)6] >D for allj and suit-
ably chosen ly;,
(iv) e+ E < iwe<b — E.
Then

H m
P[a<kEYMk<b,j=1,2,"’,mu;1§YMk=1ué]
=1 =

—e (u (o, 0, iwe 2 3 bm) + A>,
=1
where u(o, 7, s, t) is Green’s function for the heat equation

of _ %
a o8
in the region G,
G={a<s<bt>0}
If (M) — 0, then A — 0.
This lemma can be applied to the random variables Yi,, 41, Yi,42, -+,
Yi,,,, - It should be noticed that the variables Y;,, do not fulfill condition (ii)

and hence must be treated independently. Our recursion formulae are now
Ryw =1, Ry = 0, 1#0,

1 =7 ko — ky

v=20,--,n,

(k2v - kzv—lj itk R

R - : v =
mgm Pt (5 — G 4 ko — kgyy) leF2rR2e-1

|
—
-
‘.
3

R'ﬂc2v =
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where u;(o, 7; s, t) is Green’s function for the heat equation in the region G;,

Gj={ 1_W<S<1 )\N*’t>0}

or

ui(o, 758, 8) = ”——\/W—(t—_——;—) I=Z——uo (-1}

(24) | exp[ <s + )jv, - (—4 :t)’ _(i)+ Xg‘v‘*) - 21)2].

If N tends to infinity, the A’s disappear and the sums over j go over into inte-
grals, with the exception of the sum in the first step which consists of only one
summand,

1 J
Ry, = )\N*( (O 0; )\N”2)\2N> + A)

With this exception all sums tend to finite positive limits. The factor in (20),
multiplied by N ~* also tends to a finite limit, namely

16" .
N_}NA}f, ~ \/21r.

Forr-N* — x, we obtain

N,(kZI' - k2v—-l)r+k2,——k2y—l ~ 1 ex [—l .—.—xz :l
(r + ko — ko) ler 2=t \/on (o — far) P 2 foo — foal

Finally we have
: 0o (L) - L -
im P [max st () - ] <]
+o0 2n+1

= X (=DF-dienT 11 (fi = £

701710+ 1 in=—%

o[BG

ALz <A

(25)

1 (x27+1 - ('—l)jvxb - 2)\jv)2]
d: o dz s
2 ;Zl; f2v+1 - f2r o :

where 2, and 22,41 should be replaced by 0. This expression is ().
Let us now prove that for those values of A and sequences of N for which AN }

are integers,
—4
SN ( ) Nl < AN :|

(26) hm P[sup |Sy(x) — 2| < AN = lim P[max

N->x0 jEM N

must be true.
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To each z ¢ I there exists a j &€ My such that either z = j/N orz = j/N + ¢
with 0 < ¢ < 1/N. Set Sy(z) = ¢/N. From
. . 3
0(p) — g =t =d _ > MV
Sy (z) x N €= N
follows, for ¢ > 0,

S?v(j+1>_j+lzsg(x)_j+1_i—j—1>>\N*

N N N N = N’
because the value to the right is a multiple of 1/N. From
. . 3
) —z =129 < MV
Szv(x) x N €S N

follows analogously

. . . . . 3
(L)L <) — L =i AV
The second probability in (26) cannot be smaller than the first one and the
limit of the second probability depends continuously on the endpoints of the
intervals of I. Therefore the two limits have to be equal. The convergence must
be uniform in A, since ®(A) is a bounded and continuous function. Hence

Plsup | Sh(z) — z| < AN
zel

tends to ®(\) for all A and all sequences of N. In view of (7), this proves
Theorem 1.

Theorem 2 can be proved in a similar manner. We now disregard the absolute
value signs in the definition of i and Dy . The summations in (10), (11), (15),
(21) and (23) go from — « to AN?* and the lower boundaries for the partial sums
in (22) are omitted. Green’s function for the heat equation in the region Gy ,

is now

Uj (U’ 758 t) 2m Z ( 1)

|-

4(t — 1)

Hence

i o (L) = L i
im 7 [ (s () = ) < o

2n+1 1

=@2m™ le (f: — f1—1)—% o Z (—1)22'0“

J00d10e " 1in=0
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zj <N

n — (1) — i )2
B _1_ Z (Zar41 (—=1)" 25 — 2Nj)) ] dzy +++ dzom,
2 y=0 f2y+l - fz”

where again zo and 2,41 are 0. This proves Theorem 2.

3. Extension of the limit theorems of Rényi. Let F(x) be a continuous function
for z # z,, with F(z, — 0) = fyy1 and F(z,) = fo,forv = 1,2, --. / n, and
feny1 = 1. Let fo be a positive number such that fy < fi. If fo > fi, then we get
the same results except that only the f; = f, will appear. Denote the empirical
distribution function by Sy(z).

TaEOREM 3. If A > 0, then

27 lim P[ sup M < )\N_}] = ¥(\),
Nooo Fo< F(z) F(x)
400 1 2n
(28) T = > (—l)kdf f exp[—- E Aijxixj] dxo «*+ dZon,
k=—00 Hy 2 1,7=0
where
(fisr — J-0f7 —fifim
A..: ,A._.=A..__=—-—-’
S 7 AT C A 70 R ¢/ /)
Ay =0, fori<j—1 or ¢>54+1,
2n
d=@2n"?* II (i — ARG
and
+o0
H, = U (=N < (=D z + 20k < A; =N < (=D 25,1 + 2p, < A,
Pyt Pp="%0
A< (=D + 2Ap, < N\, v =1, -+, n}.

TarEoREM 4. If X > 0, then

(29) lim P [ sup M < AN~ *-J = ¥t(),
N->oo fo<F(2) F(x)
(30) lim P[ sup FM < AN~ *} =¥ (),
Novoo foSF(2) F(x)
1
(B) WO =2 (-0 - fexp[— EZAﬁxix,]
k=0 + 2 %, dzge+dzay,
where Hx
1
Hi = U  {—o < (=D + 20 < X
P1,e+,Pa=0

—o < (=1)"zpa+ 20p, <\, —0 < (=D 2o +20p, < ANv=1,---,n}.
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The convergence is in both theorems uniform in A and for A < 0 all limits are 0.

These theorems can also be extended for distribution functions with infinitely
many points of discontinuity. '

We introduce again the random variable ¥ = F(X) with the distribution func-
tion F°(x) and the set I as the union of the intervals [fa , faoga), » = 0,1, -+ , 7.
For any F(x) ¢ I we have

Sn(@) — Fz) _ S¥(F(z)) — F'(F(x))
F(x) F(F (x)) ’

and therefore

Sv(x) — F(x)
F(z)
Let Ry(x) be the empirical distribution function of a sample Z;, Z,, --- , Zx
from a population with the distribution

Sy(x) — z
z

sup
F(@)2/fo

= sup

zel

(32) P[Z £ 2] = =, 0=z=1,
then
0
(383) P[sup SL@l—T—x < )\N‘*] = P[sup R—N(—%————Z} < W],
zel zel

since the distributions of the two populations coincide for z ¢ I. Thus,

34) P [ sup Sy(z) — F(z) < AN_*:I = P[sup Ry(@) — 2 < )\N—*].
F(2) 210 F(x) wel T
The set I, is defined as the union of the intervals [fo — ¢, fopa + €, » =
0,1, ---,m,for e > 0. If |Ry(z) — 2| = ¢ then
sup Ry(z) — z < sup Ry(x) — « ,
Ry (z)el T zele x

since Ry(x) ¢ I implies that « £ I.. We see that

P[sup By(x) — = < )\N—{l
@3) el F Ru() — @
S Pl|Ry(z) — x| > ¢ + P[ sup [ Tl < AN_*].
Ry (z)el x
By a similar procedure we have
P[ sup %x)—_x < )‘N_*:l
(36) RN(z)elze z R ( )
< P[|Ry(z) — 2| > € +P[sup ﬂx——f < )\N_%:I.
zel ¢
It is sufficient to prove
37 lim P[ sup By@) — @ < )\N_*:l = ¥(\)
N->w Ry(z)el X
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since the probability
P[|Rx(z) — z| > ¢

tends to 0 as N — . The function ¥(\) is continuously dependent on the
boundaries of I. Therefore, from (35), (36) and (37) we get

Ry(x) — x 3| _
— <)\N_:|—\I’(}\)

(38) lim P [sup
N->o zel
and from (34) follows the statement of Theorem 3.

We arrange the numbers Z; , - - - , Zy of the sample according to their values
and denote by Z# the one for which there are exactly & — 1 smaller numbers in
the sample. The probability of ties is 0 since (33) is a continuous distribution
function. Ry(x) is equal to k/N in Z§ < x < Z. . In this interval

Ry(x) — z { k/N k/N }
T = - - - —1]7.
si5e9%tn T TV ZE " Z%y
For Z}1 = k/N
k/N (k+1)/N ‘ 1
S 1| |2~ -1 i
Zi% - Zi +f0N
since k/N 2 fo implies that Z.¥, = f,. For Z:%1 < k/N
M _ 1'§ ————(k'l':)/N— 11.
Zih Zi%
Therefore,
KN _ | < Ry(z) —z| k/N _ l 1
7!/113:?’1}51»7 z |= RN?SIBIUN x =k/:’I:Ia'z}/<N VA 1 +f0N

and (37) is equivalent to

(39) limP[ max ’“/_iv—1|<>\N“*]=\1r(>\).
N-o0 kINeIy N Zk

We can write this equation as

(40) lim P[ max |In (’”—i\’) < )\N"] =¥(\)
N->o0 kINely N Zk

or, since log n — >, 1/r = ¢,

(41) limP[max ml -3 <)\N_*:|=\If(>\).

N->o kINeIy N Zk =%l

The random variables In (1/Z%) are not independent since they fulfill the in-

equalities
1 1 1
i (7g) <1 () < - <m ()
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However, they do form an additive Markov chain (cf [24]), i.e., their differences

1 1
In (ZT) In (z,)

are mutually independent. The variables

=(N+1—l)(ln *1 Il >, l=1,---,N,

*
N+1-1 ZN+2—I

have the distribution
PlU Sx]=1—¢"7, 0=z < o,
On the other hand we obtain

1 N+1—k U,
ln(zk) 2 NFi=i

Nl_N+1—k Ul_].
( ) z_:l“ ,z.; N+1-1

and

Some moments of the variables

A U —1
VI_NN—+1—I
are
B " N _ (12 N
E(V) =0, E(V3) = N F1 =12 E(| Vl|) <e 2) m

Let the set of integers 7, for which (N + 1 — j)/N ¢ I;x, be
{jﬁ = 07 17 yjl;j27j2+1’ e 7j3;"' ;j2"’j2"+ 17 ’j2ﬂ+ 1}

The j; are defined such that j;/N — 1 — fony1—sas N > o, forz=0,1, ---,
2n + 1.
According to well-known rules for conditional distributions, we have

¥ o N+1—k
P[max ( ) > <}\N_}]=P|:max >V <)\]
kINeIy/N Zk =k l k/NeIy N =1
1
- [ fHdzz,P[ max | Vil <2
v=0 l=jgyt+1l,oovigy 41| i=1
(42) Iz.l<)\

]221 Vi é Loy

i=1

Z V= 952»—1]

i§j2v
J2y—1
Vz = T2 |,

i=1

n

I2y
: H dzzy,_IP [E Vi < Ty
t=1

v=1
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where x_; = 0. The limits of the probabilities which occur in this integral can be
calculated by a limit theorem for partial sums of random variables.

Lemma. (See [13], [14].) Let Y, -+, Yumy be muy independent random
variables with

E(Yz) = 0, ‘lf,E(Yi,,,) = 2y.

Assume that for all k
43) Bl < o

where p(M) — 0 as M — «, and let a, b, £, and 5 be any numbers such that a < 0,
b >0, anda<£<11<b Then

mpy
(44) hmP[a<EYm<blc—1 -,mM;£<ZYm<n]=u(0,0),
M->0 1

where u(s, t) s the solution of the differential equation

u d*u
for which the boundary conditions

u(s, T) = 0, a < s <§ 1<s<b,

u(s,T)=l, £E <s<ny,
(46)
u(a,t) =0, 0 <t<T,
ud,t) =0, 0<t<T,
are fulfilled.
We can apply this lemma to the variables Y;, 41, Y42, -+, ¥j,, .., for

v = 0,1, ---,n, because these variables satisfy (43), with

N
M = o
The sum of the second moments
igyt1 N N 1 N 1
(20+1) _ =N - — N =
ZtM J2vtl (N + 1 - k)2 N+1_Zfzv+l kZ N+12j2v k2
tends towards
- 1 - f2n—2v 1 - fzn-2v+1 f2n—2v+1 - f2n-2v
47 2T(2 + _ =
( ) f 2n—2y f 2n—2v41 f 2n—2r4-1 f 2n—2v ’

and the boundaries for the partial sums are now
(48) @ = —\— 2y, b=N— 201, E= —\— 2y,

= T — Tov—1,
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where z_; = 0. The solution of (45), which satisfies the boundary conditions (46),
(48), is

( t) 1 fzzv—xzv-l E ( ]_)j
uLs, = _— —_—
2/ 7 (T@H = §) Jazsyy i=%

. exp[ (s + 2o —4((T(2}J)d)(x_-l-t)x2,_1) - 2)\j)]

(49)

Hence we have

l

2V

i=1

T2y 41

<\ Zvigxz,

i=1

> V= xzm]

1572

lim P [ max
N> l=joytl, eevy 2y 41

_ Zgy oo’ _ j (x _ ( 1) Loy—1 — 2).7)
- 2\/,,.T<2m) f j;eo( 1) exp 4T @+

On the other hand, we apply the Central Limit theorem to the variables Vj,,_, 41,
Vigyr42s *=* 5 Vi, , Obtaining

i2v Jev—1
lim P [E Vi é Loy—1 Vz = 2»—2]

N->0 =1 i=1

(50)

(51)

_ 1 [‘2;‘—1_2211—2 e—z’/ﬂ'(“) dx
2V/ 7T ’

where the 7®” are defined in the same was as the T®* in (47).
In view of (42), (50) and (51) it follows that

N+1—k 1
Z Vz’ < )\:l =

=1 22n+1 n+} H (T(J))Q
7=1

(52) +Z°°3 / fexp[ Z(xzy—<—i);:ml—2xp,)2

n—1

Z (x2,,+1 - xzv)] dxo . dx%,

o AT

lim P
N->o0 kINeIy /N

where z_; = 0. This expression is ¥(A). This proves (37) and consequently
Theorem 3.

Theorem 4 can be proved in the same way. In the lemma of Kolmogorov we
replace @ and £ by — . The solution of the boundary problem is now

1 z9y—®gy—1 1 p
(T = 3 .[.co % (=D

s + v — (=1)(z + x01) — 20))°
. exp[—( L 4(T(2”"‘1) — t)2 : J ]d:lb

u(s, t) =

(53)




1026 PAUL SCHMID

and we obtain

lim P[ max (ZI: V,-) <A, (i:z:l V;) = wzv‘( > V;) = xzu-l]

l=joyt1,ee0yigp 41 \i=1 1S72y

S T ) j (x = (=128 — 209)*] .
- 2‘\/ WT(27+1) ‘[w 1=Eo (—1)1 exp [— 4T(2,,+1) dx.

From that Theorem 4 follows.

(54)
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