A CONSISTENT ESTIMATOR OF A COMPONENT OF A
CONVOLUTION

By WiLLiam R. GAFFEY
University of California

1. Introduction and summary. Suppose the observed random variable X is
the sum of two independent random variables Z and Y, where Z has a normal
distribution with zero expectation and a known variance, and Y has a dis-
tribution function, say G(y), which is completely unknown. Then the distribu-
tion function of X may be written as

(L) P = A [ ) e [— ﬁ”izii)] ay,

where F(z) and G(y) are unknown.

We consider here the problem of estimating G(y) from a sample z;, 22, - - -
Z» . Such a problem may arise if, for example, each x; represents a serum choles-
terol determination on one human being randomly selected from some popula-
tion. Then each x; may be thought of as the true cholesterol value for that per-
son, plus an “instrumental error” introduced by the complex chemical analysis.
We may wish to “correct” for the instrumental error, so to speak, by estimating
the distribution of true cholesterol levels in the population.

The maximum likelihood and minimum distance principles do not seem to
yield estimators which may be expressed as explicit, more or less easily comput-
able functions of the sample values. We present such an estimator, which is con-
sistent at every continuity point of G(y). (We consider only continuity points
throughout the paper.) The estimator is constructed by first exhibiting an in-
version formula for G(y) in terms of the derivatives of F(z), and then replacing
the derivatives by the difference quotients of the empiric distribution function
F.(x).

The asymptotic mean square error of the estimator is derived, and a rough
rule is suggested for deciding when it is worthwhile to compute an estimate.
The fact that the estimator is still consistent under certain kinds of dependence
between Z and Y is indicated. Finally, some comments are made on the relation-
ship between the present estimator and one derived by Eddington.

2. The inversion formula for G(z). Denote by F®(z) the 2kth derivative of
F(z) evaluated at x. Pollard [3] has derived a formula which states, in effect, that

(2.1) lim Y, (—=1)*F® (2) (o’t./2)* k! = G(z),
n+0 k=0
where {{,} is any increasing sequence of positive numbers with lim ¢, = 1.
We require a modification of this inversion formula. Let {¢.} be an increasing
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sequence of positive numbers such thatlim ¢, = 1 and lim n*ta = 0 for any
k > 0. Consider

(22) Gu@) = 32 (~D'F™ @) /2.

Then lim G,(z) = G(x). To prove this it is sufficient to show that
(2.3) lim kjil (=D*F® (2) (o’t./2)"/k! = 0.

Now

1 © z — (x — y)*
9 #0) - [ () e - ]t
@) FP@) = s [ Ha (Tt e | — S| 60
where Hy(z) is the 2kth Hermite polynomial satisfying

(2.5) Hu(z) < A2/ (2K)! exp [£*/2],
A being independent of z and k. ([5], p. 236)
Therefore,
(2.6) F®™(z) £ A/ (@kY)/o",
and consequently the absolute value of the sum in (2.3) is at most equal to
@7) A 3 V@R /2 R

Since the coefficients of ¢ are bounded above, the absolute value of (2.7) is no
greater than

(2.8) AT - )7

which approaches zero faster than any negative power of n.

If G”(z), the rth derivative of G(x), is integrable, and continuous at a par-
ticular value of z, a similar argument shows that lim G (z) = G (x).

For later use, we note that by virtue of (2.6) and the continuity of any deriva-
tive of F(x),

(2.9) F®(a) = F®(b) + O(a — b)\/(2k)1/™,
and that the upper bound of O(a — b) is independent of k.

3. The estimator of G(z) and its mean square error. Define the 2kth difference
quotient of the empiric distribution function F,(x) by

2k

3.1) FO @ h) = @)* S (i’“) (=1)Fo@ + (& — )2R),
=0

for o > 0. The estimator of G(z), for a sample of size n, will then be

32) Bule) = )_: (= 1) F (5, ) (™) 2)" /K1,

where lim A, = 0.



200 WILLIAM R. GAFFEY

Clearly, the asymptotic properties of the estimator will depend on the choice of
sequences {h,} and {t,}. We derive below an asymptotic expression for the mean
square error on the assumption that G (z) is integrable, and continuous at the
particular value of z involved. Where there is no possibility of confusion, the sub-
seripts are omitted from k, and ¢, .

Consider first the expectation of the 2kth difference quotient.

2k T g1 (2K) _ = kbl (2k)
(33)  (2W™E[F."(z, h)] = F™ (yw) dyn - -+ dipr .
z—h Yak—1—h

We may write
F®(yu) = F™(yu_1) + o — ya1)F™* (yua)

3.4)
+ (1/ 2)(?/21: - yzk—l)gF (2h+2)(£)’

where £ is between ya and ya—1 . When the integral with respect to ys is taken,
the second term on the right vanishes. Complete integration of the third term
on the right results in an expression which may be written as

(3.5) 2h)*F** (£)h'/6,
where z — 2hk < £ < z + 2hk. Therefore,

v3k—gt

(2h)2kE[F,(;2k) (x’ h)] - 2h fﬂh “ee f ] F(2k) (yzk—-l) dyﬂc—l e dyl
(36) z—h v2k—2—h ‘
+ (2h)2kF(2k+2) (£)h2/6.

Repeating the process, we find finally that

B @WEFIP(, b)) = @W*F™(z) + (2h)™ ﬁ; FO(g)h’/6,

where x — 2hk < & < x + 2hk for all 7, or more simply,
(3.8) E[F3P(z, h)] = F*(z) 4 2kF™*® (3)h7/8,

where z — 2hk < m < z + 2kh. Making this substitution in the expectation
of Qn(x), we have

n

(39) E(G.(@)] = Gu(2) + f;:_‘:o (=D F*™ (m) (o%¢/2)* 2K/ .

Applying (2.9) we obtain, after some algebra,

2 Zt n—l1

;’ ; (- l)kF(nH) (x) (a’t/2)k/k!

E [Gn(z)] = Gn(x) -
(3.10) .
+0 [h’kz_; kN @k + 2)1 &/2( — 1) 1].
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Now by virtue of the properties of the sequence {i.},
(3.11) ; kv/(k + 2)1t:/2°(k — 1)1 = O [2 k“t’:.] = 0[(1 — ).
1 k=1

Therefore, if lim h,(1 — t,)™* = 0, we have

| S
(3.12) [BG.@)] — Gu(@)]” ~ == [G° Q).
Now consider the variance of Ga(z). We note [4] that

(3.13) E[F,(z)F

Writing out the expectation of G (z) with this substitution, we obtain

(3.14) Bl [Ga(®)] + B,
or

(315) A@u@)) = Ba = 3 BG(2))
where

(3.16) "=alz Z”_: <8h’>k+'1211—f1ﬁ;§<2]k)< )( 1™

-Flmin (z + (k — 5)2h), (z + (r — s)2h)].

For convenience in writing, let a, = o’t,/8hs. After some manipulation it can
be shown that

(3.17) B, = L E[Gu@)] + Ca;

where

_ 1 n e r [Ck—r+s—1 2%k Y, 21'
(3.18) —;2_3( —a) k'r'z[ ,);6 (j>( 1)](8)
(=1)[F(x + (r — 8)2h,) — F(z + (k — 7)2h,)).
Using the fact that, for 0 = m < 2k,

(3.19) ’2:)0 (1)’ (2]'“) = (=p" (2’“,; l),
and, from (2.9), that

Fix + (r — 8)2h,) — F(z + (b — 5)2ha)

(320) R 2 2 2 2
= 2h[(r — §) — (k — /)] + Olka(r — 8)° + ha(k — 5)],
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we find that

(321)

By < aET 2k+2r—2) kr]
+O[L, k—“(k+r—1 k+rl
If we let k + r = 7, (3.21) may be rewritten as
2h, $* (20,)' (a - 2) [_1_ T (20) (2,-)]
(322) Cu~ g F_1)toln X ()]

It is easy to verify the following equalities as Taylor series:
2 bj<2,7 - 2) _ 1 ["exp (4bcos’z) — 1

(323) =iji\j—-1 27 Jo cos®

= 4;1’ om sin’ z exp (4b cos’ z) dz = bO(e*)
and
(3.24) ;0;)’ (2‘7 ) f exp (4b cos’ z) dz = 0(e¥).

Therefore, as b increases, (3.24) becomes negligible compared with (3.23).
By the use of the integral form of the remainder,

2i(770) g o

325 It 2y (o
[ exp (4b cos z) m—v g ]
[ (211,)! 4 ooa’zv ¢ dv 1|ds
and
(3.26) Z”Z_I v (2j) -2 _ f i exp (4b cos’ x) [ f V™ e dv] dx
) =0 J1\J - m2n — Do xp 0082 z :

Let b = 2a,. Now if a,/n — 0, it is known ([7], Chap. 7) that, for any
y20,
(3.27) fim e fm' My = 1.
(2"')! 8any
Therefore, under this assumption, the ratios of (3.25) to (3.23), and of (3.26)
to (3.24), approach unity as » increases, so that (3.26) may be neglected. As a
result we have

(3.28) __ 2h, Z (2a,.)’ (2 j — 2>

N jml .7_1

and

(329) o) ~ EC@N - E(Ga())] 4 2o ?; (2;;9’ (211_— 12)
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Putting together (3.29) and (3.12), and taking account of the rapidity of the
convergence of G,(z) to G(z), we have for the asymptotic mean square error,

G — G)
n

Rathe e , 2he < (gi)’ 1 (2j - )
+2g B+ 2 ) i - 1)

In order for this asymptotic expression to be valid and for the estimator to be
consistent, C, must approach zero, and h, and ¢, must obey the restrictions
imposed during the derivation. These conditions on h, and ¢, are summarized
here:

(A) lim k(1 — t.)™ =0,
and

.t ot | _

(B) h.m 17;; exp [—E{] = 0.

Condition (B) is sufficient to ensure that C. and a./n approach zero.

El(G.(@) — G@)] ~
(3.30)

4. Specific sequences {h,} and {#}. The logical step, after deriving the mean
square error, is to determine sequences {k.} and {¢,} which minimize it. In the
present case the complexity of (3.30) makes this extremely difficult. Alterna-
tively, we may search for easily computed sequences satisfying conditions (A)
and (B). Suppose we let

4.1) hn = a(ln n)™% a>0
and
(4.2) ta =1— (Inn)~, 8> 0.

Then it may be verified that if 8 < /4, condition (A) is satisfied. If, in addi-
tion, « = 1/2 and @ = o, then condition (B) is satisfied, and in fact C. becomes
negligible.

In order to minimize the bias, whose square is the second term of (3.30), it is
reasonable to let a assume its minimum value. Finally, the convergence of G,
to G depends on the fact that § > 0. A value convenient for computation, say
B = 0.1, is suggested. These “convenient” sequences are then

(4.3) hn = o(ln n)™*°
and
(4.4) ta =1— (Inn)""%

5. Remarks on the bias of G.(z). It is possible that, with smaller sample sizes,
the bias introduced by the estimating procedure may be greater than the bias
involved in ignoring the whole problem and simply using the original sample
distribution function to estimate G(z). A reasonable rule of thumb for deciding
if it is worthwhile to compute G.(z) is to do so if the maximum bias of G.(z)
does not exceed the maximum bias of F,(z) for the given sample size. To get
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some idea of the order of magnitude of the sample sizes required, we will assume

that G(z) is a normal distribution function with variance 7°.
The maximum bias which can result from using F,(z) is

(65.1) mfx [E[F,.(x)] — GQ(2) l = m>a;)x [®(z/7) — ®(x/A/* + P)],

where &(z) is the standard normal distribution function. The maximum is at-

tained when
2\
z = 1[(.;’ + #)1n(1 + ‘i)] )
o 72

The maximum asymptotic bias of Gn(z) is

2 2 2 2
(5.2) max % [6¥@) | = th—t" max | G¥ () |,
where

wy 1 (3z f ) —z2/272
(5.3) G () = \/—_T‘r (-r" =) e ;

|G®(x) | attains its maximum at z = .742 r, and
1.38

54 max |G¥(x) | = —=.
(5.4) ax | G00) | = Zo=

Therefore, the maximum asymptotic bias of G,(x) is no greater than the maxi-
mum bias of Fo(z) if (using the forms (4.3) and (4.4) for h, and ¢,)

(In 2)™'[1 — (In 7)™ < 4.35427 (-)4

Jeta+ e ma+ 1 — (Zma+a9)]

Since this inequality involves the asymptotic bias of ,(z), it is presumbly not
too trustworthy for small n. Substituting » = 30 and solving for o/, we find that
(5.5) holds if ¢/7 < 3. In other words, a sample of size 30 justifies computing
G.(z) if the standard deviation of the known component is no more than three
times the standard deviation of the unknown component. Therefore, even
though (5.5) is an asymptotic expression, it seems reasonable to say that with
samples of size 30 or larger, it is worthwhile to compute G,(z) for most situations
of practical interest.

(5.5

6. Dependence between Z and Y. Suppose now that the normal random
variable Z, instead of having expectation zero, is dependent on Y in the sense
that it has an expectation u, when ¥ = y. Then if y + u, isa continuous, strictly
monotone function of y, the analyses leading to (2.1) and (3.2) are still valid,
provided the derivatives and difference quotients are now evaluated at the point
« + po . Therefore, under this kind of dependence, G,.(x —+ u.) estimates G(z).
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7. Other estimators of G(z). Although the present paper arose from considera-
tion of some public health problems, the problem of instrumental error has had a
long history in astronomy. In particular, several solutions to the integral equa-
tion (1.1), under varying restrictions on G(z), have been given by astronomers.
(See [2] and [6] for bibliographies.) With the exception of [2], however, the solu-
tions themselves are offered as estimators, without taking into account the error
involved in using an estimate of F(z). Consequently, their consistency is open
to question. In [2], an estimator for G (z) when F®(z) is observed is given,
and its maximum bias computed when G*”(z) is a normal probability density.
The approximate variance of the estimator when F(z) is subject to error is
also given, but the form of the bias shows that the estimator is not consistent.

It is of some interest to examine one of the first solutions to (1.1), given by
Eddington [1]. It is

(7.1) g (—1)*F® (2) (¢*/2)"/k! = G(@),

which may be thought of as Pollard’s formula (2.1) with the limit and summation
operations interchanged. In practice, only the first two terms of (7.1) are used
as an estimator, and difference quotients are apparently used to approximate
the derivatives. However, even if we consider the whole series, and assume the
derivatives known, it is clear that the convergence of the solution depends on
the form of G(z), so that (7.1) is not consistent for arbitrary G(z).
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