ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Pittsburgh, Pennsylvania Meeting of the Institute,
March 19-21, 1959.)

1. Mathematical Problems Associated with Measurements Made by Match-
ing with Known Standards. W. S. Connor anDp N. C. SEvEro, National
Bureau of Standards.

The process of matching can be thought of as measuring the unknown true value of some
characteristic of an object, and of comparing the measured value with a series of equally
spaced standard values. Let the true value of the unknown be 0, the measured value be Y,
the standard value closest to Y be X, and this closest standard value minus the measured
value be Z. Then X = Y + Z. Further, let Y be a random variable which is normally dis-
tributed with mean zero and variance o2, let Z be uniformly distributed on the interwal
(—a, a), and let Y and Z be statistically independent. The probability P4 that an unknown
object will be assigned the standard value which is closest to its true value is shown to
be Py = Prj—a < X < a} = [®#(2a/s) — #(—2a/s)] + o/ale(2a/c) — ¢(0)] where

8(t) = [ 0@ dt = [La(1/v/2m)e ¥ d.

The solution is obtained by convenient use of the usual convolution formula for represent-
ing the probability density function for the sum of two statistically independent random
variables. By similar methods, the probability Pg that two independent measurements on
the same object will result in the same assigned standard value, regardless of whether it is
the closest standard value, is shown to be

Ps = [#(\/2a/6) — &(—/2a/0)] + V20 /ale(\/2a/0) — ¢(0)].

2. The First and Second Moment Structure of the Maximum Likelihood Es-
timators of the Parameters of a Multivariate Normal Distribution with
Double Samples. Jack NapLER, Bell Telephone Laboratories, Whippany,
New Jersey.

Let z be a p-dimensional, non-singular, normally distributed, vector random variable
whose coordinates are partitioned to form a g-dimensional vector random variable y and
an r-dimensional vector random variable z(p = ¢ + r; ¢ =2 1;r = 1). It is assumed that a
random sample of n observations is taken from the distribution of  and an independent
random sample of N — n observations is taken from the distribution of y. The first and sec-
ond moments of the maximum likelihood estimators of the parameters of the distribution of
z are presented for the combined sample.

3. Some Properties of Stirling’s Numbers of the Second Kind. Jou~ L. Bage,
Florida State University. '

In the course of investigation of the asymptotic behavior of a probability distribution
discovered by Leo Katz and James Powell (Proc. Am. Math Soc., Vol 5 (1954), pp. 621-626),
a relationship was noted between one of Sukhatme’s Bipartitional Functions and Stirling’s
Numbers of the Second Kind. Jordan (Calculus of Finite Differénces, Chelsea Pub. Co.,
New York, 1947) deals with many properties of Stirling’s Numbers of the Second Kind.
Denote the sum on the superscript of these numbers, for fixed subscript n, by f(n). A gen-
eral formula for the mth difference of f(n) is proved.
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4. Minimax Solutions to Trichotomies. LoN~NIE L. Lasumax, Florida State Uni-
versity.

This paper presents an explicit method of obtaining minimax solutions to a special class
of problems. Let z be a real-valued random variable with probability density f(x, ) =
b(#)e’*g(x), a continuous function of the parameter 9, and consider the problem of accept-
ing one out of the three hypotheses H;:6 = 6; , 7 = 1, 2, 3. Given three possible decisions
to make, a; , @z , or a3 , where a; means accept H; , and a set of losses w;; , the loss incurred
from taking action a; when H; is the correct hypothesis, then it is shown that if a pair
(z', 2”) with 2’ < z” exist such that the risks to the statistician from a choice of a test
procedure ¢ are the same regardless of the value of 6, the minimax solution to the problem
is a form of the Bayes solution. Denote such a solution by ¢*. In such a case there is a com-
mon risk V regardless of which hypothesis is true. It is then shown that there is a least
favorable a priori distribution £ on 8 such that the risk when nature uses £* and the statis-
tician uses ¢ is never less than the risk using £* and ¢*; this latter risk is also shown to be
¥, and thus the minimax solution is established. An example using the normal curve is given.

5. The Distribution of the Number of Successes in a Sequence of Dependent
Trials. K. R. GaBrieL, University of North Carolina.

A sequence of dependent trials is considered which has the properties of a Markov Chain
with two ergodic states and transition probabilities: failure to success P (1 — d), success
to success P(1 — d) + d --- P being the stationary probability of success. The exact dis-
tribution of the number of successes S in n trials is derived, and the first four moments
obtained exactly. Approximate formulae are suggested as follows:

K., = nP,
Ko=nP1—-P)(1+d)/(1—d),va=(1-2P) (1 +4d +d)/(nPQ — P))}} (1 4-d) (1 — a2}
va= (1 — 6P+ 6P2)(1 + 10d + d*)/nP(1 — P)(1 — d?).

From the theory of recurrent events it is shown that S is asymptotically normally distrib-
uted with mean and variance as above. Numerical computations of exact and approximate
cumulants for selected values of n, P and d are presented. These give an idea of the char-
acteristics of the distribution and the rapidity of its approach to normality. The distribu-
tion is illustrated by an application to the number of rainy days in a month, with » = 31,
P = .473 and d = .381, and the normal approximation is seen to he very good.

6. Values of Games with Moves in [0, 1]. (Preliminary report) MarTIN Fox,
University of California, Berkeley.

Consider a zero sum, two person game, in which vue players move alternately by choosing
points in [0, 1]. The game will end when a total of n moves have been made. Let X; be the
point chosen on the ith move (by player I if 7 is odd, by player II if 7 is even). Let the
payoff be f(X:, X», --- , X,) where f is continuous. When the ith move has been made,
the player who makes the (z + 1)st move will observe¢; (X1, -+, Xi) =1, -+, n — 1).
If the ¢; are all constant, we have the case of no information so that the game has a value
according to Ville’s minimax theorem. If the ¢; are all one-to-one, we have the case of per-
feet information so the game has a value. In the present paper an example is presented to
ghow that for n = 3 these games do not always have values. For the case n = 2 it is proved
that these games always have values: Existence of a value is proved for a special case with
n = 3. The author is seeking additional conditions guaranteeing values of these games for
arbitrury n.
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7. Explicit Results for the Dam with Poisson Input. Josepa M. Gani anp N.
U. PraBuyu, Columbia University and Karnatak University.

Let Z(t) be the content at time 0 < ¢ < o« of an infinite dam, fed by Poisson inputs of
magnitude & with parameter A, and subject to a steady continuous release ceasing when
Z(t) = 0. The distribution function F (z, t) of Z(t) then satisfies the difference-differential
equation oF (z,t) /ot — dF (2,t)/9z = —MF (2,t) — F(z — h,t)} (0 < z < «). This particu-
lar case of Takdcs’s integro-differential equation for the d.f. of the waiting time in a single-
server queue yields an explicit solution for F (2, t). The probability of first emptiness of the
dam at time T’ = 2o 4+ rh(r = 0, 1,2, ---), starting with Z(0) = 2, is given by g(z ,T) =
eMN\zTr=1/r!; from this, the probability of emptiness at time ¢ (not necessarily for the
first time) may be derived as F (0,t) = e™ E}iﬁ”"’)/h])\f (¢t — jh)ti—1/j!. Solving the difference-
differential equation directly, the d.f. F (2, t) is finally found to be

F(z,t) = SEMenenin(rh — 2)}r F(O, 2 + t — h)/rl.

8. Some Stochastic Processes with Application toa Counter Models. RonaLp
Pyke, Columbia University.

Let {Y,.:n > — =} be a Renewal process with common distribution function H, and let
{t; ,j > — ] be successive time points of discontinuity for a doubly infinite Poisson proc-
ess. Let fbeany real-valued function defined on R, for which f}zz | f(t, y)| dH (y) dt < .
The processes {7(t):¢ >0} and {n*({):— o < ¢ < »} determined by

7(8) = Dostisoflt — b — 4, Y)n*(@) = S—wctj<o [t — t;, ;)

are studied and their one-dimensional characteristic functions obtained. For given 0 < a
=< b, either of these processes is said to be in state A at time ¢ if n(¢) < b and if the process
has been less than a sometime since it last exceeded b. The expected number of counts
(i.e., transitions from state A to state B), as well as the expected time in state A, during
(0, t) are studied. For one case, approximations to the expected number of counts are ob-
tained by the method of steepest descents.

9. Use of Series Expansion in Estimation Problems for Distributions Involv-
ing More Than One -Parameter. (Preliminary report) Y. S. Satag, Uni-
versity of Alberta. (By title)

Guttman (Biometrika, Vol. 45 (1958), pp. 565-567) has given a method of determining
an unbiased minimum variance estimator without taking conditional expectation with
respect to a sufficient statistics under certain regularity conditions. The same method is
extended for distributions depending on more than one parameter. If ¢, , {5, --- , ¢, are
sufficient statistics which assume non-negative integer values with probability

ktd’ltl’d)éz e d)il;n(ol , 02 y "ty 01)
where ¢; are functions of 6; and k, is a function of ¢ and if
G0, 02, --+,61) = g(61,02, -+ 0)/m(6i, 02, - 01)

can be expanded as a power series of the form 3 A, ¢i*¢s? -« -« éi* where 4, is a funetion
of ti , then an unbiased minimum variance estimator of ¢ (8, , 6, --- 6,) is A,/k,(k, # 0).
This method can be used to obtain unbiased minimum variance estimators for certain classes
of distributions which involve more than one parameter for e.g. multinomial distribution.
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'10. A Comparison of the Effectiveness of Tournaments. W. A. GLENN, Virginia
Polytechnic Institute.

Round robin, replicated knock-out and double elimination tournaments (in which play-
ers are eliminated after two losses) are investigated for their effectiveness in selecting the
best of four players. Denoting the probability that player ¢ defeats player j by =, , it is
assumed that these parameters are constants satisfying a general set of inequality rela-
tions. A best player is here defined as one having a probability greater than } of defeating
cach of the others. It is further assumed that each game results in the selection of a winner,
so that m;; = 1 — i, . Since in some tournaments two or three players may receive the
same total number of wins, a play-off may be required for the determination of an ultimate
winner. The criteria proposed for the comparison are the probability that the best player
wins (after play-off if necessary) and the expected number of games required. For general
values of the parameters expressions are derived for the evaluation of the criteria, and
comparisons are made on the basis of series of assigned parameter values. The special case
in which all but one of the players are of equal strength is considered in detail. The possi-
bility of extending this investigation to cases involving a larger number of players is dis-
cussed.

11. Application of the Geometry of Quadrics in Finite Projective Space to the
Construction of PBIB Designs. R. C. Bose anp D. K. Ray-CHAUDHURI,
Upiversity of North Carolina.

The geometry of quadrics in finite projective hyperspace has been applied to construct
some series of PBIB designs, with two or three associate classes, including some new de-
signs with parameters in the practically useful range. Let (C) and (D) be two classes of
linear spaces such that spaces of a given class stand in the same geonetrical relation to a
quadric @ in PG (n, s), s = p™ where p is prime. Then in many instances, the incidence
relationship of (C) and (D), provides a PBIB design. For example, if we take (C) as the
class of points on a non-degenerate quadric @, and (D) as the class of lines contained in Q,
we get a PBIB design with the following parameters:

v = N, n), b=N(1,n), r=N(©On—2), k=s+1, No=1, A =0,
m=sN0,n—2), ne=N@O,n) —sNO,n —2) — 1, p}, =(s— 1)+ s2N(©,7n — 4),

= N0, n — 2),
where N (p, n) denotes the number of p-flats in @ and is given by the formulae,

@) N(p, n) = IT [Gm2otr — 1)/ @rhmr = 1)),

itn =2k,p=sk —1;
» !
(i) N(p, n) = II [(sn2¥# — s 4 gboptrt — 1) /(o i — 1)),
itn=2kk—1p =k — 2and Q is elliptic;

Giit) N (p, n) = TT (s 4 ghorr — gbopto=i — 1)/ (srior — 1)),

ifn=2k—1,p =<k —1and Q is hyperbolic.
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12. Some New Cases of the Packing Problem in Finite Projective Space with
Applications to Fractionally Replicated Designs. R. C. Bosg, University
of North Carolina.

The general packing problem for the finite projective space PG (r — 1,p™) of r — 1 dimen-
sions based on the finite field with s = p™ elements may be stated as follows: Find the
maximum number of points which can be chosen in PG (r — 1, p™) so that no ¢ lie on a linear
space of dimensions ¢ — 2 or less. This number may be denoted by n = n,(r, s), and the
associated set of points may be said to give a tight packing of the tth order for the space.
If ¢ = 2u or 2u + 1 the coordinates of the points may be used to obtain a 1/s7 fraction
of the s» treatments in a factorial experiment with n factors, so that no u-factor or lower
interaction, is aliased with a u-factor or lower interaction. In this paper it is shown that
ns(6,3) = 12, ny(5,3) = 11. The associated set of points in the first case is the set of points
common to the three quadrics Qi = 22122 + 7123 + T1ws + 2oz + Toxs + 2axs = 0, Qs =
T1x2 + 225 + 22:%6 + TaTs + Texe + T5x6 = 0, Q3 = Xaxs + 22375 + T + Taxs + 2xare +
2z526 = 0. Fractionally replicated designs 1/36 X 3'2 and 1/35 X 3" in which no main effect
or two factor interaction is aliased with a main effect or two factor interaction follow.

13. A Necessary Condition for Existence of a Regular and Symmetrical p.b.i.b.
Design of Triangular Type. J. Ocawa, University of North Carolina.

A necessary condition for existence of a symmetrical b.i.b. design in terms of the Hasse-
Minkowoki’s p-invariant was obtained by S. S. Shrikhande. Similar necessary conditions
for regular symmetrical p.b.i.b. design of group divisible type and for of L, type were ob-
tained by R. C. Bose, W. 8. Connor and §. S. Shrikhande, respectively. The purpose of this
note is to give a similar necessary condition for a regular symmetrical p.b.i.b. design of
triangular type.

14. Use of Partially Balanced Block Designs with Three Associate Classes for
Confounded, Asymmetrical Factorial Arrangements. (Preliminary report)
Bapric M. KurkJyiaN, Diamond Ordnance Fuze Laboratories. (By title)

The results and technique, presented by Zelen (Ann. Math. Stat. 29 (1958) pp. 22-40) for
the case of GD designs, are extended to treat two cases involving partially balanced incom-
plete block designs with three associate classes when used in conjunction with factorial
experiments. The two PBIB designs considered are those that result by (1) replacing each
treatment of a BIB by another, complete BIB design and (2) replacing each treatment of
a GD design by » treatments. Vartak (Ann. Math. Stat. 26 (1955) pp. 420-438) has shown
that each of these designs is at most a PBIB with three associate classes. For each of these
designs, the solutions of the reduced normal equations for the treatment estimates are
found. With respect to the factorial aspect of the problem, the variances and covariances of
the various main effects and interaction terms have been derived for the class of design
above. Tt is shown that these can be written as Kroneker products of matrices which lead
directly to the appropriate sums of squares ‘associated with the analysis of variance. In
addition, the inter-block analysis is worked out.

15. Best Linear Estimates by Order Statistics of the Parameters of a Model
for Failure Data. ANDRE G. LaurenT AND ErLpoN Rienm, Wayne State
University and Bendix Aviation Research Laboratory.

The paper presents tables of 1) the order statistics covariance matrix for samples of size
= 1 to 10 drawn from the population with survival function S(¢) = exp[l + ¢t — exp(?)],
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where { = X/Eyor{ = (X — Xo)/7;2) the minimum variance linear unbiased estimates
of the parameters E, , X, , 7, based on order statistics for singly censored samples of size
1 to 10 and their variances and covariances. Several aspects (failures, aging, waiting time)
of the problem of ‘“estimation cost”” versus ‘‘precision’’ are considered and different esti-
mates ave compared from the viewpoint of efficiency.

16. On Testability in Normal ANOVA and MANOVA with All “Fixed Effects.”
S. N. Roy axp J. Roy, University of North Carolina and Indian Statisti-
cal Institute.

With the notation of the above paper it can be proved that, for standard form I, Rank
A = Rank [C:l = Rank A + Rank C (both equalities being unattainable at the same time),

and, for standard form II, 0 < Rank 4 — Rank AB < m — Rank B (both equalities being
unattainable at the same tlme) and, in any case, that what we are generally testing is an
H{ such that Hy C Hy C Model. In this paper it is shown that, for I, (i) if Rank 4 =

Rank [C:I < Rank 4 + Rank C, then Hy = Hy C Model, in which case H, is said to be

testable in the strong sense, (ii) if Rank 4 < Rank [C] < Rank 4 + Rank C, then H, C
H¢ < Model, in which case H, is said to be testable in the weak sense and (iii) if Rank
4 < Rank [C] = Rank 4 + Rank C; then Hy, C Hy = Model, in which case H, is said to

be uuntestable. Likewise, for II, it is shown that (i) if 0 < Rank A — Rank AB = m —
Rank B, then Hy = H¢ C Model, (ii) if 0 < Rank A — Rank 4B < m — Rank B, then
Hy, C H¢ < Model and (iii) if 0 = Rank A — Rank AB < m — Rank B, then Hy C H§ =
Model.

17. Contributions to Univariate and Multivariate Analysis of Variance with
“Fixed Effects,” Normal Error and “Random Effects” Not Necessarily
Normal. S. N. Roy anp WaitFieLp Coss, University of North Carolina
and The Woman’s College of the University of North Carolina (Greens-
boro).

For simplicity of discussion, a single response two factor experiment under certain broad
classes of designs is considered and an additive model is postulated such that one factor
goes with ‘“fixed effects,’”” and the other one with “random effects’’ characterizable in terms
of a random sample from an unknown continuous distribution which is assumed to be ap-
proximated, in successive stages, by a two valued distribution with probabilities 3 and £,
a three valued distribution with probabilities 3, } and %, and so on, the values in each being
assumed to be unknown. The continuous variate is also assumed to be independent of the
normal error. Under the model confidence bounds are obtained on the difference between
the two values at the first stage, on the two consecutive differences (simultaneously) at
the second stage, on the three consecutive differences (simultaneously) at the third stage,
and so on. This is, of course, in addition to what is usually done for the “fixed effects.”
These techniques are then extended, first to the case of an experiment with a single response
and more than two factors, and then to multiple response and multifactor experiments.
In the latter case, as a step toward this, a generalization has had to be made of the notion
of m-tiles of a univariate distribution to the case of multivariate distributions.
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18. Some Nonparametric Analogues of “Normal” ANOVA and MANOVA and
of Studies in “Normal” Association. S. N. Roy anp V. P. Buarkar, Uni-
versity of North Carolina.

In a multifactor multiresponse experiment where some of the responses are assumed
t0 be continuous, some discrete, some categorical with an implied ranking (like good, fair,
poor, etc.) and the rest purely categorical, with a similar division into four classes for the
factors, a finite number of classintervals are assigned to each continuous response or factor
and a probability model is postulated in terms of a product-multinomial distribution with
unknown probabilities in the multidimensional cells and preassigned weights or scores
along all ‘“‘marginals,” response or factor, that are structured, and, of course, no such
scores along the ‘““marginals” that are purely categorical. Under this model, hypotheses
are posed analogous to (i) different kinds of hypotheses in ‘‘normal’’ model I ANOVA and
MANOVA, including analysis of covariance and regression and (ii) different kinds of inde-
pendence and regression relations in ‘“normal’’ multivariate distributions. Large sample
tests of such hypotheses are offered, and an indication is given as to how to obtain the
asymptotic powers.

19. On Moments of Order Statistics from Normal Populations. Z. GovINDAR.A-
Juru, University of Minnesota. (By title)

Let Xun < Xam -+ < Xwn be the order statistics (os) from a sample of size n from
the standard normal population. Contributions by Tippet (1925), Hastings, et al (1947),
Jones (1948), Godwin (1949), Cole (1951), Rosser (1951), Ruben (1956), Bose and Gupta
(1956), Teichroew (1956), Sarhan and Greenberg (1956), have been made to the Problem
of Moments of os from Normal Samples. Exact values of low moments of os for sample size
six or less and numerical values for sample size twenty or less are available. In this investi-
gation simple recursion formulae among the first, second, and mixed (linear) moments have
been derived. Certain identities among the moments which are true in general (that is
without the use of normality) are also obtained. The above will enable one to extend Ru-
ben’s table of moments of the largest os in samples of size fifty or less to moments of all
os in samples of size fifty or less. It is shown that it is sufficient to know one first moment
when » is even and one second moment when n is odd, in order to solve for the first and
second moments of all os from sample of size n, in terms of those for the preceding =. It
is also shown that at most (n — 4)/2 mixed moments for even n, and (n — 3)/2 mixed
ones together with one second moment for odd n are sufficient to solve for the product-
moment matrix of the vector of ordered variables in sample of size n, in terms of the second
and mixed moments of os for the preceding n.

20. A Note on J. Roy’s “Step-down Procedure in Multivariate Analysis.” V. P.
Buaprkar, University of North Carolina. (By title)

Test criteria in multivariate analysis are usually derived either from the \-criterion or
the largest and/or the smallest characteristic roots. Both of these can be regarded as special
cases of the general “‘union-intersection’’ principle. An alternative procedure, called the
“step-down’’ procedure, was used by S. N. Roy and R. E. Bargmann (Ann. 3ath. Stal.
Vol. 29 (1958), 491-503) to test multiple independence of normal variables. This procedure
was recently applied by J. Roy (dnn. Math. Stat. Vol. 29 (19568), pp. 1177-1187) to derive
test criteria for a large class of hypotheses other than that of multiple independence. In
this note, J. Roy’s method has been used to test multiple independence of normal variables
with means given by a general linear model. Simultaneous confindence bounds on an ap-
propriate set of ““deviation-parameters’’ are also obtained.
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21. On a Class of Problems in Multivariate Analysis of Variance. S. N. Roy
AND J. Roy, University of North Carolina and Indian Statistical Institute.

(By title)
Assuming for a model that X = [x; --- X,] is a set of n independent stochastic vectors
pXn
such thatx;:N[E(x; ), £ ](¢=1,2, ---,n) and furthermore that E(X’ ) = A £ ,where
pX1 pXp nXp nXm mXp

A is a known matrix given by the design and by what the experimental statisticians call
the ‘“‘“model,”” and £is a matrix of unknown parameters, a hypothesis is posed in the form (to
be called standard form II) H,: = B , where B is given, but 5 is unknown. For a
mXp mXk kXp
hypothesis expressed in this form (which is convenient for a wide class of problems includ-
ing that of linearity of regression) the matrices S* and S due to the hypothesis and due to
the error are computed as a preliminary to the construction of different alternative tests,
one of them being that in terms of the largest root of S*S-1. The tie-up is then discussed
between any test of an hypothesis formulated this way and the corresponding test of an

equivalent hypothesis formulated in the form to be called standard form I Hy: C
i sXm
¢ = 0 where C is given but ,of course, is assumed to be unknown.
mXp sXp

22. A Note on Confidence Bounds Connected with ANOVA and MANOVA for
Balanced and Partially Balanced Incomplete Block Designs. V. P. BraP-
KAR, University of North Carolina. (By title)

It is known that confidence bounds can be placed on the ‘“‘deviation parameter’’ as-
sociated with the test of a linear hypothesis. This ‘‘deviation parameter’’ can be regarded
as a measure of departure from the ‘‘total’’ hypothesis under consideration. It is also pos-
sible to make simultaneous confidence statements about ‘‘partial’”’ deviation parameters
which can be regarded as measures of departure from various ‘‘partials’ of the ‘“‘total”’
hypothesis. In this note, the hypothesis considered is that of equality of treatment effects
(scalar effects for ANOVA and vector effects for MANOVA) in experimental designs The
ANOVA deviation parameter for BIBD turns out to be ()\v/k)ZLl &2 where £ = t; — ¢,
or (\/k) Exe Eoxa where £ =tyq — toxt [With t’ = (;, D], and the MANOVA deviation
parameter Chmax [fva Eoxol, where Eoxp = Toxp — Tvxp [Wlth Tp><1 = (t: { t) rl. The

partial ANOVA deviation parameters for BIBD are found to be (7\”/"7)2.=1 associ-
ated with the partialhypothesis ta; = ta, = = lay, Where %q; = ta; — (Zta‘/v.), with
corresponding forms for the partial MANOVA deviation parameters. The ANOVA devi-
ation parameter for PBIBD iSZi Zi a;j £:i£; where a;; = r(k — 1)/k and a;; = — Mm/k
if the ith and jth treatments are mth associates with a corresponding form for MANOVA.
In general, the ANOVA deviation parameter is £'CE where C is the matrix of coefficients
of the adjusted normal equations with a corresponding form for the MANOVA.

23. Sufficient Partitions for a Class of Coin-Tossing Problems. (Preliminary
report) T. V. Naravana, University of Alberta.

In the following experiment G, is considered (cf. also Blackwell and Girshick, Theory of
Games and Statistical Decisions, p. 222): The probability of a coin falling head is p; with
(0 < p1 < 1), if in the previous trial the outcome was tail; and the probability of its falling
head is p, with (0 < p, < 1) if in the previous trial the outcome was head. At the first trial
the probability of head is p; . G, consists of tossing the coin until that trial when the total
number of heads exceeds the number of tails by r for the first time. The sample space



ABSTRACTS 619

Z = (Z, Q. p) is considered, where Z consists of points representing the outcomes of G,
Q= (0<p <1) X (0<p:<1)withp + p» > 1. Using a combinatorial lemma estab-
lished by the author (Comptes Rendus, t. 240, pp. 1188-89), a sufficient partition for this
sample space has been determined, for all r = 2. The problem of estimating p,, p, is being
considered.

24. Estimation of the Mean and Variance of a Quantitative Characteristic in a
Polygenic System. ALLaN G. ANDERSON, Western Kentucky State College.

A system is considered in which a quantitative characteristic (such as yield of corn) is
affected by many gene-pairs whose contributions are equal and additive. It is assumed that
means and variances are known for a set of inbred parent lines, and formulae are developed
for the estimation of mean and variance of any hybrid descended from members of the
inbred set by means of a known pedigree. One year of field experimentation is required to
obtain needed data on all first generation hybrid crosses possible among the inbreds, but,
from then on attention can be directed toward those strains for which the prognosis is
favorable based on the estimated means and variances.

25. Selecting a Subset Containing the Best of Several Binomial Populations.
S. S. Gupra anp M. SoBEL, Bell Telephone Laboratories, Inc.

Let z, denote the number of successes in a known number n; of observations from a bi-
nomial population II; with unknown probability p; of success in a single trial; let y, =
z;/n, (1 = 1,2, --- k). The problem is to select a subset of the k populations II; so that
that the ‘“‘best’’ population (i.e., the population with the largest value of p) will be included
in the selected subset with a preassigned probability P*, regardless of the true values of
the p; . The suggested procedure R is “Retain a population II, if and only if y; = max (y, ,
Y2, -+, yx) — b”’. The constant (= 0) is determined so as to satisfy the given probability
requirement. Expressions for the probability of a correct selection (i.e., the selection of a
subset containing the best population) for the procedure R are derived and, in the case of
a common number n of observations, these are used to construct tables of the smallest
constant needed to carry out the procedure R for selected values of n, k and P*. Formulae
are obtained for the expected number of populations retained in the selected subset and
tables are given for the expected proportion of populations retained. Alternative procedures
based on the transformation of variables are briefly discussed.

26. Hadamard Matrices and a Problem in the Theory of Code Construction.
R. C. Bose anD-S. S. SHRIKHANDE, University of North Carolina.

A sequence @ = (ai, a2, -+, a.), a; = 0 or 1 is called an n-place message. Hamming
distance between two n-place messages is the numbex of positions which are different. Let,
A (n,d) denote the maximum number of n-place messages that can be constructed such that
the distance between any two messages is greater than or cqual to a pre-assigned positive
integer d < n. We prove the result that the following stdtements are equivalent: (i)
A (4, 2t) = 8, (i) A(4t — 1, 4¢) = 4¢, (iii) there exists a symmetric balanced incomplete
block design with parameterse = b =4t — 1,r =k =2t— 1, =t — |, and (iv) a Hada-
mard matrix of order 4¢ exists. This genemalizes results of Plotkin (Research Division Re-
print 51-20 (1951), University of Pennsylvania, Moore School of Electrical Fnginecring),
where he showed that A (4¢, 2¢) £ 8tand A (4t — 1, 4¢) < 4¢ and that the maximal codes
with A4 (4¢, 2¢) = 8t and A (4t —1, 4¢) = 4¢ could be constructed if 4t — 1 is a prime. The
structure of these maximal codes is also investigated here. These maximal codes can be
constructed for all values of ¢ £ 50, except possibly for ¢ = 23, 29, 39, 16 and 47.
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27. Modified Neyman-Pearson Methods Which Avoid “Paradoxes” and Tend
to Coincide with Other Methods. (Preliminary report) ALLAN BIRNBAUM,
Columbia University.

The methods proposed take the following form in problems of testing between two simple
hypotheses H. specifying respective densities p;(z), 7 = 1, 2, if r(X) = p2(X)/p:1(X) has
a contipuous ¢.d.f. F. (u) under H; : If outcome z is observed, report the pair of error levels
a(z), B(z), where a(z) = 1 — Fi(r(z)) and B(z) = Fa(r(z)); if q(x) = B(z)/a(z) > 1,
the observation z is considered strong evidence for H, as against H, (in the usual general
Neyman-Pearson sense); if ¢ (z) is not far from 1, the observation is considered inconclusive
evidence for comparing the hypotheses, etc. Such methods avoid usual accept-or-reject
formulations which seem over-schematic in scientific research applications. They avoid
semblances of reaching strong conclusions from weak data which may appear with more
conventional methods (cf. e.g. Cohen, Ann. Math. Stat., Vol. 29 (1958), pp. 947-972). In
any experiment providing at least a moderate amount of information, these methods give
inferences which tend to agree with those obtained by maximum-likelihood methods; or
Bayesean methods (excluding only extremely unequal a priori probabilities; cf. Lindley,
Biometrika, Vol. 44 (1957), pp. 187-192) ; or Lehmann’s approach (excluding only % very far
from 1, on p. 1171 of Ann. Math. Stat., Vol. 29 (1958), pp. 1167-1176).

28. Hypothesis Tests on the Population Lower Limit (Minimum Life). ParLLIP
G. CarwLson, Arthur Andersen & Co. (introduced by S. B. Littauer). (By
title)

let ;1 < 2 < 23 < --- < z, be an ordered sample of n elements from a population F
(z, ¢, o, K) where z is a random variable, e is the lower limit, ¢ is a scale parameter, and
K is a known family parameter. For certain populations the statistic h, = (z; — €)/ (2 —
z,) is independent of the scale parameter o, and can be used for testing hypotheses on the
(unknown) lower limit e. For the population F(z, ¢,0, K) = ((x — €¢)/0)X, e < z, the h,
statistic has the probability function R (h,) = 1 — {1 — [h,/(hn 4+ 1]1%}»"1. The moments
are given (for K = 1) by Ehl, = n8(t+1,n).For F(z,¢,0,K) =1 — exp {—[(z — ¢) /o] X},
¢ < z, which is the Third Asymptotic Distribution of Extreme Values, k. has the probability
function R(hs) = 1 — [n/{ 1= [ha/(hn + DIE}] Bnlka/ (hn + DIE/{1 = [ha/ (hn + 1)]K}
+ 1, n]. For K = 1, the moments are related by

Ehy = [ttn — 1)/n(t — 1] [[(n — 1)/0)ERSY — ERYY.

Since this family has been used widely to explain fatigue and reliability phenomena, the
h. statistic can be used to test the minimum life of material, or of a component or set of
components.

29. Truncation and Tests of Hypothesés II. IrwiN GurTMAN, Princeton Uni-
versity. (By title)

The distribution of the sum of squares of n trunecated normal variables is derived for
the case n = 1(1)4, where the terminus point is ‘““a’’ standard deviations on either side of
the mean. The difference in power and size of tests of hypotheses concerning the variance
(the mean assumed known) is contrasted with the usual procedure, i.e. assuming a random
variable has a ‘complete’ normal distribution, and the correct significance points are ob-
tained. An indication of the corresponding ‘“F’’ situation is given.



ABSTRACTS 621

30. Randomization and Factorial Experiments. SyLvAiN EHRENFELD, New York
University. (By title)

This paper examines several questions relating to the 2* factorial series of experimental
designs. One question that is considered is the effect on the usual estimating and testing
procedures of a 2* factorial experiment when the relevant number of fuctors are k + n. If
the levels of the remaining n factors were chosen systematically we have, in effect, a 1/2» X
2k+n fractional factorial. This question is further examined in terms of randomized choices
of the levels of the n factors. This is, in effect, a randomized fractional factorial where 2F
out of 2¥*+» experiments are chosen by some randomized procedure. The question of the
various methods of carrying out such procedures is examined. A particular procedure is
outlined, whereby one can estimate subsets of the effects with randomized fractional fac-
torials without the usual assumptions of negligible interactions. The above procedure lends
itself to an approach whereby a larger and larger fraction of the full factorial is used. At
each stage, the usual testing and estimation procedures can be carried out. These methods
are particularly important when experimentation, for e\plomtory purposes, with a large
number of factors, is carried out sequentially.

31. Geometrical Methods in the Construction of Group Alphabets. R. C. Bose
AND Roy R. KUEBLER, JRr., University of North Carolina. (Invited paper)

Notions of finite projective geometry are applied to the group alphabet introduced by
Slepian (Bell System Technical Journal, Vol. 35 (1956), pp. 203-234). This alphabet is a
2%_element subgroup of the Abelian group of 2" sequences of n binary digits. The construc-
tion of such an alphabet is equivalent to the distribution of an integral W-measure over the
points of PG (k — 1, 2), the measure of each point being the weight (number of unities) of a
certain sequence (letter) of the alphabet. Necessary and sufficient conditions that an in-
tegral measure define a group alphabet include the congruences W;_».; = 0 (mod 2¢-2) for
all 7, where Wi_..; denotes the sum of the W-measures of all points on the ¢th (k-2)-flat of
PGk — 1, 2). The additional congruence conditions W.,., = 0 (mod 2¢) for all u, ¢ = 1, 2,

, k — 3, are necessary. Geometrical considerations are applied to the problems of (1)
satisfying the congruence conditions, (2) finding the relation between n and W (W being
defined as the largest integer such that the code associated with the alphabet will correct all
transmission errors of multiplicity up to and including W), and (3) counting the number
of (W + 1)-tuple errors which will be corrected. Specific results are given for k = 2, 3, 4.

32. A Simple Minimum-Average-Risk Procedure for the Multiple Comparisons
Problem. (Preliminary report) Davip B. Duncan, University of North
Carolina. (Invited paper)

Let [y1, <<+, Yn, 8] be a sufficient estimator for [u1 , - - -, un , o] such that, to take a typical
simple case, [y1, * -, ¥a] is normally distributed with mean [u; , - -, u.] and variance o2,
and s? is the usual form of independent estimate (with » degrees of freedom) for o2. Let T
represent the class of n(n — 1) differences 7' = {rir = (u; — w)/N 204, =1, -+, n
i % j}. The sub-set system of the multiple comparisons problem considered is that formed
as the restricted product of the two-decision component-problem subset pairs r > 0, = § 0

for all r ¢ T. A Bayes solution of the form indicated in (1] Duncan, Ann. Math. Stat., 1958,
p. 622, is developed for each component problem. Their simultaneous application, all r ¢ 7',
is shown (see also, [2] Lehmann, Ann. Math. Stat., 1957, pp. 1-25) to be the Bayes solution
to the given multiple comparisons problem with respect to a loss function formed as the
sum of the component loss functions and to a Bayes function having the component Bayes
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functions at its margins. The table of ¢t in {1] is used for each component solution, the test
statistic now also beiug a function of the residual variance among the y’s and having » +
n — 2 instead of » degrees of freedom. (Research jointly supported by the U. S. Air Force
through the Office of Scieniific Research of the Air Research and Development Command
and by the U. S. Public Heulth Service).

(Abstrects of papers presented at the Cleveland, Okio Meeting
of the Institute, April 2-4, 1959.)

1. Relation Between Certain Incomplete Block Design. S. S. SHRIKHANDE,
University of North Carolina.

The following results are proved. Theorem (1). A partially balanced incomplete block
design with two associate classes, and with parametersu = (n 4+ 1) , b =ne, ,r=n — 1,
k=n-+1,n=20—2N=1Xx=2 pu=n—1,ph = 4 has triangular association
scheme (Tn41). (Bose and Shimamoto, J.A4.8.4., Vol. 47 (1952), pp. 151-184). Theorem (2).
For any value of n, the existence of the balanced incomplete block design D, with parame-
ters u = ng,b= m+ 1)y, r=n+1k=n— 1,x = 2 implies the existence of two
p.b.a.b. designs, Dy with parameters u = b = ng, ,r=k=n—1,n = 2n — 4, N = 1,
Ae=2,p11 =n— 2, ph = 4, and D), with parameters « = n, , b = n, k = n — 1,r =2,
"y = 2n — 4, AN = 1, Ag = 0y pil =n.— 2, pfl = 4such that D1 = Du + Dlz ) where “+”
derniotes the fact that blocks of Dy and Dy , taken together give the design D, . Theorem (3).
The existence of the design Dy, implies the existence of the corresponding design D, , if the
association scheme of Dy is triangular (T,.). Theorem (4). If n = 5, orn = 9, the dual of the
design Dy, is another p.h.i.b. with the same parameters. A constructive method of em-
bedding the design D, into the corresponding symmetric b.i.b.d. with parameters « = b =
(m2+n+2)/2,r=Fk=mn+1,\= 2is also given.

2. Quasi-Ranges of Samples from an Exponential Distribution. PauvrL R.
Riper, Wright Air Development Center.

The distribution of quasi-ranges of samples from an exponential population is given, as
are formulas for the cumulants of the distribution.

3. Asymptotic Rate of Discrimination for Markov Processes. LaMBErT H.
Koopmans, Sandia Corporation.

Simple hypotheses Hp and Hgq specifying two distinct, positive, transition densities
p(z | y) and q(z | y) and positive initial densities mp(x) and = ¢ (x) with respect to a finite
Lesbesgue-Stieltjes measure are assumed for a discrete time parameter Markov process.
Let R, be the likelihood ratio statistic based on the first » 4+ 1 observations of the proc-
ess and consider the class of sequences of likelihood ratio tests T(a) = {[R. > nal: n =
0,1,2, --- | generated by letting a vary in the interval — © < a < «. If the function
Ki(z,y) = "' (z|y)q' (z|y) salisfies a certain regularity condition it is shown that there
exist limits I and lg , lp < 0 < lg, independent of the initial densities, such that the se-
quences T'(a) are consistent for [p < @ < lg and inconsistent in the complement of the clo-
sure of this interval. Furthermore, the rate at which the error probabilities tend to zero is
exponential for !p < a < lg . An asymptotic rate of discrimination p (P, @) is defined which
is a measure of the limiting behavior of the class of consistent likelihood ratio sequences
T (a). It is shown that p (P, @) is the infimum, over the unit interval, of the largest eigen-
value of the integral operator with kernel K,(z, y). Several examples are considered and
an extension to Markov processes with respect to arbitrary Lebesgue-Stieltjes measures
is indicated.
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4. Distribution of a Quadratic Form in Three Variables. (Preliminary report)
AnDRE G. LavrenTt, Wayne State University.

Let X = (u,v,w)’ be normally distributed N (0,5),8 > 0. A series expansion involving
confluent hypergeometric functions is proposed for the distribution of X’X. Further,
P(X'X £ R?) =Zad +(R)R2®*D where the ax are the coefficients of the series expansion
corresponding to the two dimensional case and I can be obtained by recursion from I, and
I, , which are easy to compute with the help of a table of normal integrals and ordinates.

5. On Exponentially-Mapped-Past Statistical Variables. (Preliminary report)
JosepH OrTERMAN, Willow Run Laboratories..

The exponentially-mapped-past statistical variables are quantities relating to a set of
observations computed in such a way that the recent values of the observations contribute
more strongly than the values observed in the more distant past. The relative weighting is
a geometrical ratio in the case of discrete (naturally discrete or sampled) data and an
exponential function in the case of continuously observed functions. In this paper defini-
tions of some exponentially-mapped-past variables are introduced and certain simple
relationships are discussed. The distinct computational advantages of the e.m.p. variables,
such as e.m.p. average and e.m.p. variance, are pointed out. ’

6. Simultaneous Comparison of the Optimum and Sign Tests of a Normal
Mean. R. R. Bauapur, Indian Statistical Institute. (By title)

This paper gives a detailed example of a general method of comparing two tests. Con-
sider a sample of n independent observations from an N (u, 1) population and suppose it is
desired to test u = 0 against g > 0. Let Lo(n) and L,(n) denote the significance levels actually
attained in the given case by the optimum and sign tests respectively. The paper studies
the asymptotic joint distribution of Lo(n) and L.(n). It is shown that if » = 0 the limiting
distribution of L and L; is that of G(U) and G(V), where G is the N (0, 1) distribution func-
tion, and U and ¥V are correlated N (0, 1) variables, the correlation being (2/x)t. In case
u> 0, Loand L, tend to zero, the asymptotic relationship being (roughly speaking) Lo(n) =
77+ Ls(n), where 7 is a constant depending ou u such that 0 < 7 < 1 and such that » decreases
as u increases. The question of estimating or predicting the actual value of Lo given only n
and L, is discussed. It is shown that, with attainment of an assigned level as the criterion,
¢ = 2log.[2p7q?]/u? serves as the asymptotic efficiency of the sign test, where p = P(X > 0| ),
g = 1 — p. If the variance is not known to be 1, u? is replaced by log (1 + w?) in the for-
mula for ¢.

7. Some Estimates of the Binomial Distribution Function. R. R. BAHADUR,
Indian Statistical Institute. (By title) \

Let p be given, 0 < p < 1. Let n and k be positive integers such that np < k < n, and
let B, (k) = Z',: (:‘l) prq"~r, where ¢ = 1 — p. It is shown that B, (k) = [(Z) p"q”"‘]

-q-F(n+1, 1;k + 1; p), where F denotes the hypergeometric function. This representation
seems useful for numerical as well as theoretical investigations of small tail probabilities.

The representation yields, in particular, the result that with A, (k) = (2) prgr (k4 1)/

k4+1— (n+ 1)p], we have 1 < A,(k)/B.(k) =1+ z7%, where z = (k — np) (npg)}
(Theorem 1). Next, let N, (k) denote the Normal approximation to B, (k), and let C, (k) =
(z + (g/np)b)- (27 )t-exp(x?/2). It is shown that (4,N,C.)/B.— 1asn — =, provided only
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that & varies with n so that £ = 0 for each n (Theorem 2). It follows that 4,/B, — 1 if and
only if £ — « (i.e. B, —0) (Corollary 1). It also follows that N,/B, — 1 if and only if A,C,
— 1. This last condition reduces to £ = 0(n!/¢) for certain values of p, but is weaker than
this for the other values; in particular, there are values of p for which 4,C, —1 can hold
without requiring even that k/n — p (Corollary 3).

‘8. Distribution-Free and Nonparametric Tolerance Regions: The Exponential
Case. (Preliminary report) Lro A. GoopMAN AND ALBERT MADANSKY,
University of Chicago and The Rand Corporation. (By title)

Exact one-sided and approximate two-sided « content tolerance regions at confidence
level C are developed based on the first r ordered observations from a sample of n exponen-
tially distributed variables. These regions are compared with nonparametric one-sided and
two-sided tolerance regions. Optimal properties of these regions are discussed, as is the
asymptotic behavior of the tolerance regions. It is also shown that these regions are distri-
bution-free in the sense defined by Fraser and Guttman, Ann. Math. Stat., Vol. 27 (1956),
pp. 162-79. The effect of assuming an exponential distribution, when in fact the distribution
is a mixture of two exponentials, is discussed. Also, uniformly most powerful invariant one-
sided and two sided B-expectation tolerance regions are derived. Some of the results pre-
sented by Goodman, Ann. Math. Stat., Vol. 24 (1953), pp. 139-40, are extended.

9. Bayesian Lot-by-lot Sampling Inspection. HerBerT B. EisenBERG, Iowa
State College. (By title)

Based on the Work of Arrow, Blackwell and Girshick (Econometrica, 1949), this paper
derives Bayesian single, double and sequential attribute sampling plans. Lot quality dis-
tributions considered are the binomial, two-point, and degenerate one-point. The loss
function considered is negative profit, given by Lace. = —sd — uuN (1 — p) +u2 (Np — d) +
nt, Le;. = —sNp — wuN (1 — p) + Nz, N being size of lot. Profit efficiencies of single and
double sampling plans relative to sequential plans are computed in specific cases. Partial
ignorance is considered by evaluating loss incurred when optimizing with respect to the
wrong lot quality distribution. As expected, sampling never pays in the binomial case; in
the two-point case, the optimum sequential plan is not necessarily hypergeometric SPRT;
indeed, the acceptance portion of the boundary need not be connected.

10. Combining Inter-block and Intra-block Information in Balanced Incom-
plete Block Designs. FRANKLIN A. GRAYBILL AND Davip L. WeEks, Ok-
lahoma State University. (By title)

When an Eisenhart Model III (blocks random, error random) is assumed in a balanced
incorgplete block, two independent estimates of treatment differences have been exhibited
by Yates. A combined estimate of treatment differences has also been set forth by Yates
but none of the properties of the combined estimate have been given.

It is the purpose of this paper to show that Yates’ combined estimate is based on a set
of minimal sufficient statistics. A combined estimate is set forth in the paper which is shown
to be unbiased and which is also based on a set of minimal sufficient statistics.

11. Minimal Sufficient Statistics in Incomplete Block Designs,.-Model II. Davip
L. Weeks AND FRANKLIN A. GrRAYBILL, Oklahoma State University. (By
title)

Under the assumption of an Eisenhart Model II in a balanced incomplete block design,
minimal sufficient statistics are exhibited which have dimension six. These six statistics
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can be found from the quantities which are used to obtain an analysis of variance by the
recovery of inter-block information method. The distribution of the six statistics is dis-
cussed. Similar results have been found for certain types of partially balanced incomplete
block designs with two associate classes.

12. Some Theorems Concerning Eisenhart’s Model II. FRANKLIN A. GRAYBILL
AND RoBERT HULTQUIST, Oklahoma State University. (By title)

Eisenhart’s analysis of variance Model II can be written as follows: ¥ = X8 + ¢ or
Y =Z’E_‘,X¢B¢ + e where 8o = u is a scalar constant, 8;, (z # 0) is a vector of p; random
variables such that E(8;) = 0; EBiBi’ = o3l ; e is a vector of n random variables such that
E(e) = 0; E(ee’) = ot I; all random variables are independent. This model is studied
with respect to point estimation. Under the assumption that all random variables are
normal variables, theorems on the following were proved: (1) The maximum and minimum
number of distinct characteristic roots of the covariance matrix of Y; (2) Conditions on
the design matrix X for complete sufficient statistics to exist; (3) Minimal sufficient statis-
tics when the design matrix satisfies certain conditions; (4) Analysis of variance estimators.
When the random variables are not normal, theorems on the following were proved: (1)
Uniformly best (minimum variance) unbiased quadratic estimates of the ¢%; (2) Estimable
functions of the o7,



