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ON A PROBLEM OF ROBBINS

By J. R. IsBELL
University of Washington

1. Introduction. This note concerns a sequential decision problem raised by
Herbert Robbins [2]. The problem is not solved; in fact, it is not known if there
is a uniformly best procedure. A procedure is given here which is uniformly
better than the one proposed in [2] and is best at least in a special case.

The nature of the problem is this: given two coins with unknown probabilities
P1, P2, of coming up heads, to prescribe a rule for making an infinite sequence
of tosses, choosing the coin for the nth toss as a function of the history of the
sequence since the (n — r)-th toss (inclusive). The memory length r is fixed.
The aim is to maximize the frequency of heads.

The rule proposed here is best in case p; or p. is 0. We cannot say the best,
since many rules have the same effects in this case. The rule may be briefly
stated: ‘“Change coins when one coin shows tails r successive times, or when r — 1
tails with one coin are followed by a single toss with the other coin, which s tails”.
Robbins’ rule [2] calls for changing in these cases and further whenever the
first toss with a new coin is tails. For r < 2, the rules coincide. Otherwise the
present rule is better except in two trivial cases, p1 = p: and max (p1, p:) = 1.

2. Formulation. The description of the memory requires some amplification
for the case n < r. (None is given in [2].) Here we shall regard the sequence of
tosses as a Markov process with 4" states, namely the states of the memory.
We consider that the process may begin in any state, and we propose to evaluate
any procedure according to the results it yields starting from the worst possible
state.

This is an artificial description which one might prefer to avoid. On the other
hand, any decision procedure which might be optimal according to some other
version of the problem but disqualified by our artificial start could be described
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as unstable; an experimenter using it could not afford to make finitely many
errors in recording his results. This matter will be illustrated with an example
at the end of the paper.

Given a rule R, an initial state 7, and probabilities p; and p, of obtaining
heads with each coin, one has a definite stationary Markov process. Then for
each of the 4" states s, the frequency of state s converges with probability 1
to a definite limit. The probability of obtaining heads on a toss in state s is
either p, or p. (depending on s and R). The tosses are independent events, and
therefore the frequency of heads converges with probability 1 to a definite limit
f(R7 i} D, p2)'

We propose to measure the worth of a rule R by the function w(R, p1, p2)
defined as the smaller of min; f(R, 7, p1 , p.) and min; f(R, ¢, p. , p1). Presumably
the permutation of p; and p, here has the same effect as Robbins’ requirement
[2] that f be symmetric in p; and p. . (This is not an exact statement of Robbins’
requirement, and cannot be exact, because of the vagueness concerning the
start which we have already noted.) This still does not give us a numerical
value for each R, nor does a numerical value seem appropriate. One may hope
that for each memory length r there is a rule with maximum worth w for all
D1, D2

The rule R} which is the subject of this note prescribes tossing the same coin
as on the toss immediately preceding, in all but 4 of the 4" states; one changes
coins when the memory records r tails with the same coin, or » — 1 tails with
one coin followed by a tail with the other coin.

The worth w(R¥, p1, p:) is readily computed. For r = 1 and r = 2 the rule is
identical with Robbins’ R, , and the worth is the value given in [2]:

PG+ p2gi (r=12)
@i+ g ’

where g; = 1 — p;forj = 1, 2. Here Robbins can use an argument on blocks of
consecutive tosses with the same coin (untroubled by the vagueness we have
noted), because these blocks are independent events. For » > 2, using RY, those
blocks of tosses are not independent. We have established the existence of
f(R¥, %, p1, p2) by considering 4" states of the process. For computing its value
it is convenient to consider four special states S;, L; (¢ = 1, 2) called marked
states. S; is the state in which R} prescribes that we terminate a short sequence
(one toss long) of tosses of coin ¢, L; the corresponding long sequence-ending
state. Except in trivial cases, with probability 1, each marked state is succeeded
by 0 or more unmarked states and then a next marked state. The subsequence
consisting of the marked states is again a stationary Markov process. Let o;,
)i, be the respective relative frequencies of the marked states. We have oy + \; =
% = g2 + A, 01 = @1 ]2, and o2 = QM. The proportion g1:)1i02 ), is then
Q1 P2 D1:q2 P1ip2 . Now the occurrences of S; are followed by blocks of tosses
with coin 2 which terminate precisely when tails first comes up r times; their
expected length [2] is (1 — g¢3) / p2 ¢z . The blocks following L, are governed



608 J. R. ISBELL

exactly by Robbins’ R., and have expected length 1/¢5 [2]. We find w to be

p1ga(l — ¢ @) + p2qi(1 — q1 ¢5)
g2(1 — g1 q2) + qi(1 — q1 ¢3)

for r > 2.

3. The results. The rule R} may, for anything I know to the contrary, be
uniformly best for each 7. What will be proved here is this:

The worth w(RY, p1 , ;) s greater than or equal to w(R. , p; , p2) for all values of
7, p1, and ps , with equality in the three cases r < 2, p1 = p;, max (p1, pz) =1.
It ¢s greater than or equal to w(R, p1, p2) for any rule R using the same memory
length r, in at least two cases: the case r = 1, and the case min (p1, p;) = 0.

The assertions comparing R; with R, follow from the previous computation.
The assertion. concerning » = 1 follows from simple computations which the
reader may supply. (There are 4 states and 16 rules’in this case.)

Consider next the case that p; = 0 and r = 3. We may assume ps is not 0
(all rules would have worth 0) nor 1 (R} would have worth 1). Let R be any
rule using memory length ». We shall consider subcases, assuming first (a) when
the memory records r successive tails with coin 1, R prescribes the use of coin 1
again. But if this is the initial state, then with probability 1 the process consists
entirely of tosses of coin 1 and entirely of tails. Thus w(R, 0, pz) =
0 < w(RY, 0, p2). Now suppose (b) when the memory records r successive tails
with coin 2, R prescribes the use of coin 2 again. The argument under (a) shows
that w(R, p2, 0) = 0, and this is the same as w(R, 0, p;) from the definition of
w. There remains subcase (c): neither (a) nor (b). Then with probability 1
each coin is used infinitely often. As in [2], define z for k = 1, 2, - - - , as the
length of the kth block of consecutive tosses of coin 1, and y, as the length of
the kth block of consecutive tosses of coin 2. Every x; is at least 1. The expected
value of yx given @y, «++, Tk, Y1, ***, Yk—1, 1S at most X = (1 — qz) / p2 ¢3;
for this is the expected length of a sequence of tosses terminated precisely at the
first run of r consecutive tails, and the present sequence must terminate at
or before that run. Then the expected frequency of heads in the first 2k blocks
is at most Ape / (1 + A). We already know that the frequency of heads in the
first n tosses converges with probability 1 to f(R, 4, 0, p:), and therefore
f(R,4,0,p2) < Ap2/ (1 4+ 7)) = w(RF,0, p.). With a glance at the definition of
w, the proof for this case is complete.

By the symmetry of w, the case p. ='0, r = 3, is also accounted for. We need
only complete the argument for the case p; = 0 and r = 2. As above, we may
assume p; is not 0 nor 1; moreover, the subcases (a) and (b) are settled by the
same reasoning as above.

We are now considering a rule R using memory length 2 which prescribes
changing coins whenever the memory shows two tails with the same coin. Let
us subdivide this case according to what R prescribes in case the memory records
tails with coin 1 followed by tails with coin 2. (i) Suppose R prescribes changing
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back to coin 1 in this state. Observe that with probability 1, coin 1 comes up
tails every time it is used. Then the argument under subcase (c) of the previous
case (r = 3, pr = 0) can be modified; every block of tosses with coin 1 is at
least one toss long, and the expected length of any block of tosses with coin 2
is at most 1/gs . This leads to the conclusion w(R, 0, p.) = w(R5, 0, p:) for
subcase (i).

We are left with subcase (ii): R prescribes using coin 2 when the memory
records “coin 1, tails; coin 2, tails”. I do not know an argument for this case
which would avoid the computation of six estimates for w(R, ps, 0). The case
hypothesis guarantees that blocks of tosses with coin 2 are at least two tosses
long, unless the preceding block of tosses with coin 1 ended with heads. There
are three memory states which may have non-zero frequency and which end
““coin 1, heads” (only three since coin 2 here never shows heads). Then there are
2° possibilities as to what R prescribes in these states; but the eight reduce to
six because some rules exclude some memory states.

Five of the six subcases seem absurd—stopping with heads. All I can say is
that routine computations suffice to dispose of them. In the remaining case
every block of tosses with coin 2 has length exactly 2; a block of tosses with
coin 1 lasts at most until tails shows twice, the expected length is at most

(1 — ¢q2)/p2gs, and

pa(l — ¢3) (1 — ¢3) _ *
w(R, p2,0) < = g0 = o) = 5= i w(Ry, ps, 0).

4. Concluding remarks. In my review [1] of Robbins’ paper [2], I stated that
Robbins’ rule “appears to be best for » = 2”. This remark was based on compu-
tation of the effects of the rules which treat the coins symmetrically and never
change coins when the last toss was heads; there are only eight of these. It would
certainly be surprising if R, (which is R;) were not uniformly best; but a proof
is still lacking.

Finally, consider the following alternative formulation of the problem, which
is consistent with the incomplete description in [2]. For the nth toss,n = r + 1,
the situation is as we have described it; but for the first r tosses the experimenter
may use a special rule treating this part of the process as a collection of transient
states. With this formulation, for r Z 4, there ¢s no uniformly best rule. This may be
established by checking that there is no single rule which both (a) does as well
for p, = 0, p» = %, as R}, and (b) does as well for p, = 0, P2 = %, as a certain
rule S, described herewith. The effect of S, will be (with probability 1) to set up
an alternation of blocks of tosses with coin 1, one toss long, and blocks of tosses
with coin 2 which end only when heads comes up r successive times. When p.
is less than }, these are longer than the corresponding blocks which R} gives
and which end when tails comes up r successive times. An argument similar to
those we have been using shows that this is the best one could possibly hope for.
To see that it is possible, examine the rule S,, which calls for using the coin
used last in all but eight memory states: (1-2) four successive heads with either




610 J. R. ISBELL

coin; (3-4) three heads with one coin, tails with the other; (5-6) tails twice with
one coin, then twice with the other; (7-8) the transient states succeeding the
first two tosses, in case the same coin was used and came up tails both times.

One can easily modify S; to obtain an S, , as described above, forr = 5,6, - -- .
A little study of S, suggests objections to its use even if it is permitted; its worth
is a discontinuous function of p; and p. , less than the worth of R for almost all
values. There is also the objection mentioned earlier; the limiting frequency of
heads can be changed by finitely many errors.
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ADDENDUM

By CHARLES E. Crark aND G. TrEVvOrR WILLIAMS

Booz, Allen and Hamilton and The Johns Hopkins University

The references listed in our “Distributions of the members of an ordered sam-
ple”’ (Ann. Math. Stat., Vol. 29 (1958), pp. 862-870) should have included “Statis-
tical treatment of censored data. I Fundamental formulae,” by F. N. David and
N. L. Johnson (Biometrica, Vol. 41 (1954), pp. 228-240). This earlier paper
considers the basic problem of our paper, inter alia. Both papers use power
series expansions of the inverse of the distribution function. Since the analysis
of the earlier paper leads to expressions in powers of (N -+ 2)~! and our paper
leads to reciprocals of factorials of N 4+ 2, many results of the two papers are
identical to terms of order N-!; in other words both papers reproduce the classi-
cal approximations.



