DENSITIES FOR STOCHASTIC PROCESSES'

By Cumarrorte T. STRIEBEL’
University of California, Berkeley

1. Introduction and summary. Let {zs(), 0 ¢ 2} be a family of stochastic
processes defined by their finite dimensional distributions; that is,
{Folx(t1), -+, z(ta)]; 6 € Q} is given for all finite sets of time points ¢, , - - , ¢, .
A general procedure for treating a statistical problem concerning this family
has been to solve the problem for the finite dimensional families and then see
what happens to the solution when limits are taken over suitably selected sets
of time points. For example, if 6[x (), - - - , z(,)] is an estimate of 8 based on
the finite dimensional family and it can be shown that the limit

Ble(tr), -+, 2(ta)] — Bl2(2)]

exists in some sense and is independent of the defining set (¢, &, ---), then
this limit will usually provide an adequate estimate of 8 for the process. Fre-
quently the properties of the estimates [z (%), +++, x(tx)] can be extended to
0z (8)).

An alternative approach to the problem is proposed by Grenander [1]. He
introduces the likelihood ratio of two processes P and Q restricted to a finite
number of time points, shows that it converges to a limit as the number of points
goes to infinity and that this limit is the density of P with respect to @ if this
density exists. He uses these results to derive numerous statistical results.

The only criterion which he gives for the existence of the density is that the
limit of the likelihood ratio be finite a.s. P. In applying this criterion he must
always make use of some additional knowledge of the processes such as a.s.
existence of -certain integrals. In Section 2 these results are established very
simply using the theory of martingales, and a criterion for the existence of the
density is given which proves convenient in several applications. A condition
also is given under which a density computed for a countable number of time
points is valid for the continuous parameter process. Once the existence of the
density is established standard statistical techniques can be applied directly.
For example, sufficient statistics can often be found by inspection, or maximum
likelihood methods can be used.

Densities for a normal process with continuous covariance and unknown mean
value function are derived in Section 3.-Minimum variance unbiased estimates
of regression coefficients are obtained.

In [2] Cameron and Martin consider processes which are obtained from a
Wiener process by linear transformations. They state conditions under which
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such a process is absolutely continuous with respect to the Wiener process, and
they give a formula for computing the density. These results can be applied to
the Ornstein Uhlenbeck process with covariance o’¢ *"*"*! to obtain a family of
densities for 285" = constant. In Section 4 this family of densities is derived
using the methods of Section 2. Using the same techniques it is shown that this
family of Ornstein Uhlenbeck processes is mutually absolutely continuous.
The maximum likelihood estimate of the correlation parameter 8 is computed.

2. Existence and computation of densities. Let * = 9; X %, X ...be a
countably dimensional Euclidean space and @ the Borel o-field over this space.
Denote by @" the subfield of @ consisting of all cylinder sets with bases in
X X Xz X --- X X, If Pis a measure over {X°, @7}, P" will denote this
measure restricted to G”.

LemMa 1. Let P and Q be two probability measures on {X~, @} such that P"
18 absolutely continuous with respect to Q™ forn = 1,2, --- . Let dP"/dQ" = f".
Then {f*, @", n = 1, 2, -- -} is a martingale on the probability space {X”, @~, @}.

Proor. For m > n, @™ D @", and hence for all A" £ @"

[ rrae=rum=[ .

Since f" is certainly ®@"-measurable, it follows that E[f"| Q"] = f™
TuaeoreM 1. Under the assumptions of Lemma 1:

1) " —>fas Q.

(i) B|f" —f]|— 0 if and only if P is absolutely continuous with respect
to Q on @°; and then dP/dQ = f a.s. Q.

(iii) Forr = 1, E(f") 1e,.

(iv) If ¢, < o for r > 1, then the conditions of (ii) hold.

Proor.Since £ | f* | = E(f") = 1,n=1,2, ---, (i) follows from the martin-
gale convergence theorem. If dP/dQ = f’ exists, then by the argument used in
the proof of Lemma 1, f’ closes the martingale. Since E(f’) = 1, it follows from
the martingale closure theorem that f* — f’ in the first mean and a.s. Q. Thus
by (i) f = f'as. Q. If E|f* — f| — 0, again by the closure theorem f closes
the martingale. Thatis, E[f | @"] = f"a.5.Q,n = 1,2, --- . Thusfor 4™ ¢ U5_,@"

(1) [ raa={ saq=ruam.

The extension from UG" to @ is unique so that (1) also holds over @*. Thus
dP/dQ = f a.s. Q. (iii) is a consequence of the convexity property of condi-
tional expectations, and (iv) follows from the closure theorem.

The theorems on martingales used for this and the preceding lemma are
Theorem 4.1 (i), (ii), and (iii) of Doob [3], Chapter 7. In Section 8 of this
chapter, Doob obtains results of which Lemma 1 and Theorem 2 are easy
extensions.
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In order to apply these results to find densities for stochastic processes with a
continuous time parameter, the step must be taken from X to %(7T'), the space
of real-valued functions of ¢. The set T is assumed to be an interval, infinite or
not, of the real line. In the space %(7'), let @ be the Borel s-field over cylinder
sets with bases Borel in finite dimensional subspaces. For some specified set
D= (t,t, ), @ and G@" will denote the subfields of cylinder sets with bases
in JTeeo &, and JT7-1 &, respectively.

TaeoreM 2. Let {X(T), @, P} and {X(T), @, Q} be two stochastic processes
such that P is absolutely continuous with respect lo @ over G and the Q process is
continuous in probability. Then for any set D = (4, b, ---) dense in T, the
derivatives dP” /dQ” and dP/dQ coincide a.s. Q.

Proovr. Let g be a version of the derivative with respect to @. Since it is in-
tegrable, there exists a sequence of simple functions g,.[x(t;), x(t;), -++] such
that g. — g a.s. Q. Let D = (4, &2, - --) be an arbitrary dense set in 7'. Since
the process is continuous in probability for @, for each {: there exists a sub-
sequence {¢;;} ¢ D such that z(t;;) — z(t:) a.s. Q. Thus each g, and hence g is
a.s. Q equal to an @”-measurable function. This implies that ¢ = dP*/dQ”
a.s. Q.

Now consider a family {Py, 6 ¢ Q} of probability measures over {X(T), @}.
For a set dense in T, define

dPg

apr ¥ apr

for all 0, 6’ € Q.
CoroLLARY 1. If {X(T), @, Pg} s continuous in probability for each 0 ¢ Q,
then

dPs
dPy + dPy:

A statistic S|z ()] ¢s pairwise sufficient for the family { Py , 0 £ Q) if and only if for
all 9, 0 €, fo 50 is a.s. (Py + Py:) a function of S[z(t)].

This result is immediate from Theorems 2 and 3 and Theorem 2 of Halmos
and Savage [4].

When the processes Py are defined by their finite dimensional distributions,
fo.0r can easily be computed. If it can be shown that the family is dominated by
a o-finite measure, then the statistic found in this manner is also sufficient.

fosr — foor = a.s. Py + Py.

3. Regression parameters for a normal process. Let z(f) be a normal process
with nonsingular continuous covariance C(u, v) and mean value function

m(t) = 3 k(D)

where the ¢; are known continuous functions and the k; are parameters. Let
Pq be the process for which &, = .- = k, = 0. For each parameter point
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k= (ki, -, k) define dP;/dPg = fi. For a fixed set D = (&, t;,---) dense
in T, let

B0, 6) = 2 3 bltdbi)C 7 5).

LeEMMA 2.
BA(RY) = exp 3 3 ki ks#"(91, ).
Proor.
fe = %Z‘: Z:,{[fv(ta) — m(t)]fx(ts) — m(tp)] — x(ta)x(t6)}C ™ (tu, ta)

= [ 1 _lgy _
()] = f | evcreacam ™ P33 3 (6 — 2n(e)

[e(ty) — 2m(tp)] — 2m(t)m(t)} €t tp) di(ty) - do(t)
= exp 2:‘ Zﬂ? m(ta)m(tg) C7' (L, ts) = exp Z ZJZ kik; (i, ;).
From Theorem 1 (iii) Eo[(fi')?] T cs for all k. This implies that
(i, ;) — B(b:, ¢5) ,j=1,--,n.

THEOREM 3. If ®(¢;, ¢;) s finite for all 1, j, and D, then Py is absolutely con-
tinuous with respect to Py and has exponential density

@) exp [Z bio(z,00 — 5323 kiky <1><¢.,¢,>]

where ®(x, ¢;) 1s im ®"(x, ¢;) of it exists and zero otherwise.

Proor. From Theorem 1(i) fi — fi a.s. Py . By assumption, lim E/( fk) <
and hence by Theorem 1(iv) and (ii) dPy/dP3 = fi. This argument holds for
any countable dense set D in T. Thus, over any @, depending on a set of dense
coordinates, Pr is absolutely continuous with respect to Pj. It follows that
P, is absolutely continuous with respect to Py over @. Continuity of C(u,/v)
and the ¢,(¢) implies continuity in quadratic mean and hence in probability.
Thus by Theorem 2, dPi/dPy = fi a.s. Py .

This shows that, a.s. Py, (2) is independent of D, and hence that ®(p:, ¢;)
is independent of D. It has been pointed out by E. Parzen that this is an im-
mediate consequence of continuity of C and the ¢;. Thus the assumptions of
the theorem can be weakened to require ®(¢;, ¢;) 2,7 = 1, -+, s finite only
for one dense set D.

COoROLLARY 2. The estimates

(3) ki = ;}“(m, $:)®(z, ¢;) t=12--

minimize E[i(t) — m(t)]’ among all unbiased estimates of m(t) for each t e T.
Proor. The statistic [®(z, ¢1), -+, ®(z, ¢;)] is sufficient and complete for



DENSITIES FOR STOCHASTIC PROCESSES H63

the exponential family (2). This result then is immediate from Theorems 1 and
2 of [5].

Tor the particular case that x(¢) is an Ornstein Uhlenbeck process with
0<t<T,
(4) C(u,v) = e
and

(s, ¢5)
1 1" T
= 1[6:006,0) + Do) + 1 [ eitsit a5 [ oato at].
B Jo 0
In Theorem 1 of [6] it is shown that the estimates (3) minimize
[o Eli(t) — m()] dt

among all linear unbiased estimates. Corollary 2 considerably strengthens this
result.

4. Correlation parameter in the Ornstein Uhlenbeck process. Let z(¢) and
y(t) be normal processes with mean zero and nonsingular continuous covariances
Co(u, v) and Ci(u, v). As in the preceding section, application of Theorem
1(iv) and 2 to show that the y(¢) process is absolutely continuous with respect
to the z(¢) process requires the computation of

5y = [_[ED] fia) awio.

In this expression u" is n-dimensional Lebesgue measure and f7' (z) is the normal
density with mean zero and covariance matrix

Ci(a,B) = Ci(tayts) a,B=1,--+,m;2=0,1

with respect to a preassigned denseset D = (t, &, - - - ). If the matrix r(C7) ™" —
(r — 1)(C§) " is positive definite, this can easily be computed.

RO jia) auriay - [LEOMANT 1
f[fé‘(x)] fi(@) du'(z) = [Cocr 1 “P 73 z[r(CT)

(5) « (r—1)(C3) " &’ du"(x)
r—l
_lesre
" rerE
It must then be shown that for some » > 1, the limit of this expression is finite
asn — o,
Consider first x(¢) a Wiener process with parameter K and y(¢) determined
by the linear transformation

Ka(t) = y() +8 [ y(s) ds.

| r(CT)™ — (r = 1)(CE)TY T
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This satisfies the conditions of Cameron and Martin [2] so that the density of
y(¢) with respect to z(¢) can be computed from their paper. The process de-
termined by this transformation is y(¢) = 2(f) — e *'2(0), where 2(¢) is an
Ornstein Uhlenbeck process (4) with parameters 8 and ¢ = K/28. The meas-
ures on Xr for these processes will be denoted by Px and Pg,o . Ordering time
points of the form ¢7/2™, ¢ = 1, ---, 2™ in the obvious way and extracting
appropriate subsequences, it is sufficient to consider (5) for¢; = ir;i =1, - -+ , n;
r = T/n and n — . Then for the processes just described

Hen™ = (r = 1)(C)™
(14 ¢7) - Q<o-—-=-mmmmmememee ]

- 26r ?
K1 — e#r) i N . ~ S~y fr

E

i

i

|

1

For the case of two Ornstein Uhlenbeck processes Pg,.s, and Pg,,,, with pa-
rameters By , 0o = K/28 and By, o1 = K /2, respectively,

r(C)™ = (r = 1)(Ce)™

1 —e P Ozz-m—-m=mmmmm e '
-7 14 P \\‘\\\ i
S~ Teeel S~<a 1
= 2’5]_ 0 _e—ﬂlf "\\\\ \*\\\ =~ 6
K(1 — &%) RN el TS~al Y.
H \\\ \\\‘ S -~ \\ p—
; ~ ~ 1 _F ¢ P Bt
| S~< S~
[] N \\ —
L eremme e s 0 =g P17 1
1 —e P Ozoo-m=-m=mmm
‘‘‘‘‘‘ 1
_ 2 —Bor Tmmeael ]
o(r — V) |~ 1AL 0
— g By ~o iy TS -
B = e | g —gfr ] g g B e

~——
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In both cases all principal minors have the form

The determinant of such a matrix of order ¢ = 3 is given by

o )\2 2 1/2
(=) (- e /() - )
+ % ( I 2)(0:7 - V),

7 AN N O T
=§+((§)'"“>' “ﬁ"((é)"*)

In the first case take r = 2 and in the second case take r > 1 and satisfying
(81/Bo)* > (r — 1) /r. Then for r sufficiently small it can be shown that 0 < —\ <
7/2 and @, v > 7/2. These inequalities imply

ay —N>0

where

‘%m—a)\ Ay +—>-—-)\a'y—a)\—)\'y—)\

= (=N)(a+ M (v + 1) >0,

and hence that for r sufficiently small the matrices in question are positive defi-
nite. It is easily verified that minors for 2 = 1, 2 are positive. Thus (5) is valid,
and using the formula above for the determinants involved, a routine computa-
tion shows that the limit of (5) as + — 0 is finite in both cases.

Thus it has been established that in each case, fT(z)/f;(x) converges a.s. to
the desired density. The form of this limit is easily seen to be ce”* where ¢ is a
constant and Y is the a.s. limit of 12[(C7)™ — (C7)")2’. In the two cases con-
sidered this limit can be expressed in a more convenient form by expanding
the terms of the sequence as follows:

12((C)™ — (€)' = A(r)at + B(r)ah + o<r>2;x?-r

+ DY (& mire).

It has been shown [7] for the two processes concerned—the Wiener process and
the Ornstein Uhlenbeck process—that

n T n
ks —>[ zidt and Z (zf — 2i2in) > K
) izl

i=1
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where convergence is in quadratic mean. If subsequences are selected so that
convergence is a.s., then

T
Y=Ax§+Bx§+Cfo 2% dt + DK

where A(7) — A, etc. Routine computation of the coefficients then gives the
final results.

dP,.p _ _ 1 2 _ . T .
. = P~ 5p [/’@T KT) + 8 fo ) dt]
dPn,ﬁl . ﬂl _ 1 _ 9 - 2 7 \
AP0, 5 = E exp 2?[(31 Bo) (2 + zr KT) + (ﬂl ﬂo) £ z dt_J

for 26’8 = 24181 = 20080 = K
From the second density, it is seen that

T
@t a, [ 2t
0
is a sufficient statistic for 8. However, since this family is not complete no mini-

mum variance unbiased estimate of 8 can be found as in the previous section.
The maximum likelihood estimate of 8 is given by

T 3
—(x3 + 23 — KT) + ((x% + 2% — KT)* + SKfo zh dt)
. )
4.£ zr dt

For T large, this is approximated by

g =

K
g~ G
2 T -/c; z di
and for T small by
g0 K
zo + o1
If the continuous process is observed K can always be considered as known since
> (2f — zzea) = K
=1 !
in probability as » — 0.
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