ASYMPTOTIC EXPANSIONS FOR THE SMIRNOV TEST AND
FOR THE RANGE OF CUMULATIVE SUMS!

By J. H. B. KEMPERMAN

Purdue Unaversity

Summary. Let z, denote the position at time n of a particle describing a one-
dimensional random walk, such that the increments ¢, = 2, — 2., (n = 1,
2, - - ) are independent random variables, assuming only the values +1 and =1,
each with probability 3. Of considerable importance in many applications is
the conditional probability

Pa(1, 5, ¢) = P(2a =50<zn<em=1,--- >nlzof 7);
here, 1, j, ¢, n denote positive integers. In section 1, an asymptotic development
for p.(%, j, ¢) is given; for each positive integer m, it yields an approximation
to pa(7, 7, ¢) with error smaller than Cn™™ where C is independent of ¢, 7, ¢ and
n. As a simple application, an asymptotic development for the binomial coeffi-

cient :) isderived by letting 1, 7, ¢ tend to infinity in such a manner thatj — ¢ =

28 — n.

As a second application, an asymptotic expansion is derived for the joint dis-
tribution of the extrema of the difference between the empirical distributions of
two samples of size n.

The above asymptotic development for p.(7, j, ¢) is obtained by applying
the central Lemma 4 to an exact formula for p.(7, j, ¢). In Section 5, using this
formula, an exact formula is obtained for the distribution of the range R, of
the n 4+ 1 numbers 2z, - -, 2, . Applying Lemma 4 to it, a complete asymptotic
expansion for the distribution of R, is derived.

1. Main result. Consider a random walk 2, 21, --- of independent incre-

ments ¢, = 2, — 2,1, such that
PG = +1) = P = —1) =4, (1=12-").

In the sequel, n, 1, j, c always denote integers withn =2 0,0 <7 <¢,0 £ j = ¢
Let p.(7, j, ¢) denote the conditional probability, given 2z, = %, that 2, = j
and 0 < zm < cform =0, 1, ---, n. Observe that p,(z, 7, ¢) = 0 unless the
integers 7 — ¢ and n are of the same parity.

It is well-known that

0

Pa(i,j,0) = 27" kg_:w [((n +3 _ + 2kc)/2)

(1)
_ n ]
((n i+t 2kc)/2>_j’
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if n+ 7+ 7 is even. Moreover,

c—1

(2) Pa(2, 3, ¢) = (2/0)1;Sin kwi/c sin kxj/c (cos kx/c)".

A simple proof of (1) and (2) is as follows. Let ¢ and ¢ be fixed; then the func-
tion p,(7, j, ¢) is uniquely determined by the obvious relations

pn+l(i) jr C) = [pn@y] - 17 C) + pﬂ(zy] + 1) C)]/Q, (O < .7 < C),

2.(7, 0, ¢) = pa(i,¢,¢) =0 and po(z, j, ¢) =1, if ¢ =3, = 0if ¢ # j. But
it is easily verified that the function defined by the right hand side of (2), (or
(1), respectively), satisfies all these relations.

If s(k) denotes the kth term in the right hand side of (2) we have s(c — k) =
(=1)"""*"s(k); moreover, s(¢/2) = 0if cis even. Hence, (2) may be written as

(3) (1, J, ¢) = (4/c)l(c_§:m sin kwi/c sin kwj/c (cos kx/c)™

k=1

if 74 7+ nis even, (p.(4, 7, ¢) = 0, otherwise). Using (3), we shall derive
an asymptotic development for p,(%, 7, ¢) with a remainder O(n™™*) holding
uniformly with respect to all the parameters 7, j and ¢, (m = 1,2, ---).

More precisely, let

2 (2 — 1)
2v) (2v)!

where B, > 0 denotes the »th Bernoulli number, (B, = 1/6, B, = 1/30, B; =
1/4:2, B4 = 1_/30, B5 = 5/66, ,Ao = 1/2, A1 = 1/12, A2 = 1/45, A3 =
17/2520, Ay = 61/28350, As = 691/935550). Further, let

(5) Ag =D A o A(n! -+ w )T

where the summation is extended over all the sets (», - -+, »,) of non-negative
integers which satisfy

m+wn+ -+ v=h; n+2n+ - o=

Thus, Aw = 1 and A, = 0if b > u. Further, for u =2 1, 40 = 0, Ay = 4,
A,.“ = (12)-—“/}[‘, also A32 = A1A2 = 1/540
Finally, let

(4) A, = B,, (=12 ---),

2r
(6) Hi(z) = (Zl%) e = Hy(z) a2,
(r =0,1, --- ). For instance, Hy = 1, Hy = 2* — 1, H, = z' — 62> + 3,

H;

I

a® — 152" 4 452° — 15. In general,
Ho(z) = (2r)! D (—2)72" ™/ (»1(2r — 20))).
v=0

We can now state the main result concerning p. (7, j, ¢).
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THEOREM 1. Let
(7) gr = 4(a/m)t X sin kni/c sin knj/c e (2ak)",
k=1
where, for brevity,
a = 7'n/(2c).
A formula equivalent to (7) is
®) g = (=1)" 2 (Ha(n (G = i + 2ke)) — Ha(n™'(j + 7 + 2ke))],

ifr=20,1, ---. Finally, let

m—1 I
9 Un = Palsy jy ) = (2/m)' 25 a7 3 (= 1) Mg,
= =
(m = 1,2, ). Then, for each integer m = 1 and each constant K > 0, there

exists a number M > 0, depending on m and K, but independent of i, j, ¢, n, such
that

(10) | um | € M(e=™ + 27" He%(1 + &™),

for each choice of the integers i, 7, ¢, nwithi + j + neven,0 <7 <¢, 0 £j = ¢,
n > 0.

2. Auxiliary results. Proof of Theorem 1.

LemmMa 1. Let —log cos w* = w/2 + w’/12 + - - - denote the analytic function
for | w| < 7°/4, which assumes real and positive values for w real, 0 < w < 7°/4,
and let

(1) e(w) = (— log cosw' — w/2)w >

Then o(w) = 0 for w real and positive, w < n°/4. Moreover, we have the Taylor
expansion

0
@) o = 3 S ™,
=0 A=0

holding for | w | < /4 and arbitrary u, where the A, are as defined above.

Proor. Let 4; > 0 be defined by (1.4), especially, 4o = 1. Integrating the
well-known expansion tan z = Y wq (2v + 2)4,2”", (| 2| < 7/2), we obtain
—logcosz = /2 + Dy A2” "% Hence, from (1), o(w) = wYoe, A
(|w] < #°/4). The above assertions now easily follow.

Observe that, from (1), formula (1.3) may be written as

[(c=1)/2]
pa(3,4,¢) =

(3) o o
. (cos kn(i =6 _ o (’ﬂ_w) Yy (_ 4 (gt 2 akz),
C n n
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where & = 7°n/(2¢") and

©0

»

(4) Yy, w) = & =3 S Audw ™, (Jw] <7/4).
p=0 h=0
The proofs not being any more difficult, and in view of the proof in Section 5,
we shall determine the asymptotic behavior (for small values of | o |and | 7| )
of more general sums of the type
> cos kz ¢ " f(a (B, T(BE)?).
1<k<\

Here, f(u, w) denotes a fixed analytic function for |u | < %, 0 < |w| < wo,
(uo > 0, wo > 0), admitting the expansion

(5) fuyw) = Y S B,

pu=0 h=0

(Ju] < w,0 <|w| < wo), where s denotes an integer and the B, are com-
plex constants.
LeMMA 2. Let m denote a fized non-negative integer, and let

mp
R(m) = f(u, w) — w2, > Buu'w'™.
u=0 h=0
Then to each pair of positive constants wy and wy with wy < uo , wr < wo there corre-
sponds a constant M, independent of u, w, such that

|wR(m) | = M(|u|™+|w|™),

whenever | u | £ w, |w| < wy.
Proor. Let |u| < w,|w| =< w and put 6 = Max (|u|/w,|w]|/w),
6 < 1. We have

L

" o 4 .
| wR(m)| = | 2 hZO Buuw'™| £ 6" hZOI B | whwt™ = Ko™
pu=m h= p=m h=

Lemma 3. To each real number r = —3% there corresponds a constant M, such
that, for each choice of the positive numbers B and X,

(6) 2 ey = M~ (1 + (B)™), ifr> =%,
6 E

IA

M~ (BN, ifr < -4

Proor. Let S(B8, \) denote the left hand side of (6). In the proof we may
assume that A = 1. For, suppose the lemma has been proved for this case. Then,
for0 <A <landr < —1%,

S(8,0) = 8(8,1) < ME?8™ < ME~ e ™ (B\)"™.

On the other haqd, let0 < N < landr > —21 Then S(8, \) = S(8,1) =
M1 + . If 2% <\ < 1 we have

P+ ) < P+ (200 < 2P (1 4+ (B)H).
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Further, for 0 < X < 278, ¢ (1 4+ ™) < ™21 + Y < K™, if
K denotes the maximum value of the function ¢ #*(1 + ™), 8 > 0.

Thus, let A = 1. The function f(z) = ¢ *"(82)", (z > 0), is decreasing if
r £ 0 and, for » > 0, has a unique maximum at z, = (r/ﬁ)*, where f(z,) = C,
C denoting a constant independent of 8. Further, if » > 0, f(z) is increasing for
0 < z = zo and decreasing for x = z,. Hence, letting

) 1= [ e (g ar,
) \
we have
(8) SB,N) =14 C, ifr>0and\ < a0,

< I+ P, fr<Oor\=um.

Ifr>0and A < 2 = (r/B)’: we have, from A = 1, that 8 < 8\’ < r, hence,
C < Ce™™(B/r)™. In any case, from A = 1, e ™ (BN} < e ™ (B\Y)™H.
Finally, letting 8z* = y in (7), I = 8 *J(B\")/2, where

(9) J(w) = f ey dy.

It follows from (8) that it suffices to prove the existence of an absolute con-

stant M, such that, for w > 0,

J(w) £ Me™™(1 + w™), ifr > —1,
< Me“wt if r < —%

Letting y = w(1l + 2) in (9), we have J(w) = ¢ “w™ [T (1 4 2)" " de.
This proves (10) when either r < —% or r > —%, w = ¢, ¢ denoting a fixed

positive constant. Finally, if r > —%, w < ¢, we have
J(w) S T(r+3) ST(r+3)e "
Lemma 4. Consider the sum

(11) S =3 cosks ¢ 1o (BK)?, T(BK))T),

1<k

(10)

where o and T denote complex numbers, x a real number, \, B positive real numbers,
P, q non-negative integers; (S = 0 if X\ < 1). Further, let By, s, uo, wo be as in
(5), and

m—1 u 0 !
(12) Sm =2, 2 Bud"? ™Y cos ka ¢ (gEY) PR,
p=0 h=0 k=1

Assertion: to each choice of the integer m > 0 and the positive numbers u; < uo,
wy < wo there corresponds a constant M > 0, independent of \, z, B, o, T, such
that

|8 — Sn| = M| 7| ™ (0"
e o | (LR BT TP+ T,
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for each choice of the parameters \, z, 8, o and T, satisfying A > 0,8 > 0, B\* = 1
and

(13) o [(BN)" S wr, | 7](BN)" = wy.

Finally, the same assertion holds true if in (11) and (12) the summation variable
k s restricted to the odd integers.

Proor. In the following, M denotes a positive constant, independent of A\
z, B, o, 7, not necessarily the same constant on each occasion. From Lemma 2,
using (13),for 1 < k < A,

m—1 p

T(o(BK")?, 7(BK")") = 2o 2 B (BE)™ 0T + a
u=0 h=0
with | am | S M| 7] (o | ™(BF)™® 4+ | 7] ™(BK)" ). Hence, from
| coskx | = 1, (whether or not k is restricted to the odd positive integers),
| S —8u| = Ty + T, where Ty = M| 7| 2 n e_ﬁkz(lch ™(Bk’)P"TY 4
’ r l m(ﬁkj)qm——qzr), and T2 — ‘1:;—012;:=0 ‘BnhUhT“-h—s l Zk>)\ e—ﬂk.(ﬂk2)ph+q(ﬂ—h—s)
From g\° = 1 and Lemma 3,

m—1 u
'1’2 < ﬂlﬁ—ie—ﬁnzo hzo l o_hfn—h—s I(B)\Z)ph-}q(#—h_,)_*_;
u=0 h=
< METHTP 1 | T (BN TN,

from (13). Further, from Lemma 3, applied with A = 1,

Ty 2 MEP 1|7 (lo | (14 677 + | 7] (1 + g7,

yielding the stated assertion.
LemMa 5. For 3> 0,r = 0,1, -+, we have

i+ 2 3 eosho (2 = (1)t 3t (BT,
=1 k=—w V28
where H3, is defined by (1.6).

Proor. In view of Hy (y) = ¢ and 8 = 1, the special case r = 0 is equiv-
alent to a well-known identity for theta-functions. Differentiating 2r times
with respect to z, the general result immediately follows.

Proor or THrEOREM 1. Let 7, j, n, ¢ denote integers, 0 < 7 < ¢,0 = j < ¢,
n > 0,7+ j+ neven. Then p,(%, j, ¢) is given by (3) and (4), where

(14) o = 7'n/(2c).

Further, let m denote a given positive integer, K a given positive constant. It
suffices to prove (1.10), (with M depending only on m and K ), under the addi-
tional restriction that

(15) n=2K 21

(for, letting afterwards K = 1, the general result immediately follows). Let
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A > 0 be defined by

(16) aN' = Kn},
hence,
(17) (nNe): = 2n7'aN? = 2n'K < 2 < 7'/4,

thus, A < ¢/2. From Lemma 1 and (4),
0§¢(— é(ak‘z)?,gak?) <1, 0<k<e/2
n n
thus, the contribution to the right hand side of (3) of the terms with k¥ > X is
at most equal to (4/c)(c/2)e " = 27K, Consequently, from: (3) and (14),
pa(iy j, ) = O(¢™™)
+ (2/7) (2a/n)}(S(x(j — 4)/¢) — S(x(j + i)/e)),

where S(z) =Y 1<i<) cos kx e W(—(4/n) (ak®)?, (2/n)ak?). In order to es-
timate the latter sum, we apply Lemma 4 with X as above, 8 = a, ¢ = —4/n,
r=2/np=2¢=1,f(u w) = ¢(u, w), s =0, u; = 4K*, (uo arbitrary,
uo > uy), wy = 2 < 7%/4 = wo. Then (13) holds, from (17) and (4/n)(aX®)® =
4K® = u; . Moreover, a\® = Kn'2 K 2 1. Hence, using Lemma 1, Lemma 4
yields that, (for real values x),

(19) | S(z) — Sm(z)| € Ma{(nte ™™ 4+ n "¢ %(1 + o)),
where M denotes a constant depending only on K and m. Here,

(18)

m—1 u ©0

(20) Sm(z) = gé’Anh(—él/n)h(Q/n)"_th cos kxe ™" (ak®)***.

=1

Theorem 1 is an immediate consequence of (18), (19), (20) and Lemma 5,
the latter implying the equivalence of (1.7) and (1.8).

3. Asymptotic expansion of the binomial coefficient. Let p.(z, ) denote the

conditional probability, given 2o = 7, that z, = 5,2, > 0 forv =0, 1, --- |, n,
thus,
(1) Pa(%, 5) = lim pa(3, j, ¢).

From (1.8), limesw (—1)'g, = Ha(n}(j — 4)) — Ha(n™'(j '+ 1)), hence,
from Theorem 1 and (1),if7 > 0,7 = 0, n + ¢ + j even,

m—1

pa(4, ) = (2/vr>’"§0 ( —1>“n"‘“*,§ Ap[Hrn(n G — 4))

(2) * -
— Hoyppon(n (G + 2))] + un

where

(3) |t | < M™%,
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M denoting a constant independent of Z, j, n. Further,

@ pag) =27 [((n +i- i)/z) - <(n rit i)/z)]’

(e.g., from (1) and (1.1)),if7 > 0,5 = 0, n + ¢ + j even. Keeping n fixed
and letting 7, j tend to infinity, such that n + j — ¢ = 2s, s an integer, we have
from (2), (3) and (4),

3 27(%)= @/ S (~1n 5 A (725 = m)) + 067,

the remainder holding uniformly in s and n. An alternative proof of (5) might
be obtained by starting with Stirling’s formula or from an application of a gen-
eral theorem of C. G. Esseen (Acta Mathematica, Vol. 77 (1945), p. 63).

4. The Smirnov test with equal sample sizes. Let 2,, -, Zn, Y1, *** , YUn
denote 2n independent observations on a real random variable having a con-
tinuous distribution. Further, let

Fi(s) = 2 1/n, Fo(s) = 2 1/n

z;<s Yi<s
denote the empiric distributions of the samples x,, ---, z, and y;, “ty Yn,
respectively. Finally, let
(1) P.(a, b) = Prob (—a/n < Fs(s) — Fi(s) < b/nfor all s),

where a, b denote positive integers or + . It is not difficult to show,
cf. Gnedenko and Korolyuk [4], that, irrespective of the underlying distribu-
tion,

) 2 (%) Pa(a,b) = pua, a4

where p,(Z, j, ¢) is precisely the quantity studied in the previous sections.
Hence, from (1.1),

() =2 [GF0) = Gt

where ¢ = a + b, a result due to Gnedenko and Rvaéeva [5]. Moreover, from
(2) and (1.3),
(¢—1)/2]

[
(3) P (2;2> P.(a,b) = (4/c) D (sinkma/c)® cos kx/c)™,
k=1
where ¢ = a + b, especially,
al?)

[
(4) 27 (27?) P.(a,a) = (2/a) ;fi:i (cos (k — 3)w/a)™

Massey [6] gave a table of P.(a, a) forn < 40, a < 13, (in his notation, a =
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I + 1). In computing this table from (4), the resulting series would contain
at most six terms, most of which are neglegibly small for (say) n = 10.

Applying Theorem 1 to (2), one obtains an asymptotic development for
P.(a, b). In fact, let

(5) gr = 4(a/m)'Y sin kwa/c sin krb/c e (2ak)",
k=1

2 2 . «
where ¢ = ¢ + b, « = 7n/c; an equivalent formula is
o0

6) (=g = X {HI(2ke(20)7) — Ho((2a + 2ke) (2n) 7)),

k=—c0

(both formulae being especially simple if @ = b). Then, for each fixed integer
m = 1, there exists a constant M, independent of a, b, n, such that

m—1 u

2 () Pala ) ~ /0 & o) 3 (<1 g

< Mn "}

(7

holds true for each choice of the positive integers a, b, n. Moreover,
from Stirling’s formula, for n large,

(8) 2 <2“) B ~ (mn)'(1 4+ 1/(8n) + 1/(128n%) — 5/(1024n°) + ---).

n

Combining (7) and (8), one obtains an asymptotic expansion of P,(a, b) in
powers of 1/n with a remainder.O(n™™) holding uniformly with respect to the
integers @ and b, (m = 1, 2, --- ). For instance, the special case m = 4 yields

9) Pu(a,b) = go + (30 — g2)/(24n) + ($g0 — 392 — %gs + 394)/(24n)’
+ (=100 — 39: — Fgs — Higu + g5 — 1g5)/(240)° + O(n 7).
The weaker result
Pu(a,b) = go+ (390 — ¢2)/(24n) + o(n™)

is due to Gnedenko [3].
Finally, from (2), (3.1), (3.2), we have the expansion

gn (Zn) Pu(a, =)

n

~ (2/m)! Z(, (=1)*(2n)™7" ,'Z(:) AulH2(0) — Hypn(2an™)}.
p= =
Using (8), one obtains results of the type
(10)  Pua, ) = 1 — /"1 + a*(1 — a*/(3n))/(20")} + O(n™),

the remainder holding uniformly in a. Here, (10) contains a result due
to Gnedenko [3].
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Remark. The reader should note that (9) holds only for positive integer
values of @ and b. For instance, from (9) and (5),

(11) P.(a, a) = Go(x'n/(4a®)) + O(n7"), (a=1,2,---),

where Go(z) = 4(z/7)i (e + €™ + ¢ + -.. ). Suppose that one wants
to choose the integer ag such that P,(as, ag) is close to a given number 8, (say,
B = .95). From existing tables, one can find x, such that Go(xs) = B. Now,
for the reasonable choice of ag as the smallest integer =w/2(n/xz0)}, one can
only say that ='n/(4a’) = zo + O(n™?), thus, from (11), P.(as ,a8) = B +
O(n"). On the other hand, if » is large and as has been chosen, (say) in the
above manner, formula (9) will yield an excellent approximation to P,(ag, ag).

5. The range of cumulative sums. Let {;, ¢z, - - - be independent random
variables, each assuming only the values 41 and —1 with equal probability.
Further, let R. denote the range of the cumulative sums 29, -+, 2.,
m=t+ -4 ¢tm,2 =0). Thus, R, = U, + V., where

—U, = Min (2, -, 2a), Vo= Max (20, -, 2.).

Note that R, , U, and V, assume only the values 0, 1, - - -, n. In this section,
by applying Lemma 4 to the exact formula (1) below, we shall obtain a com-
plete asymptotic expansion for the distribution of R,. For each positive in-
teger m, it yields an approximation to P(R, < r) with error smaller
than Cn ™}, C denoting a constant independent of n and r.

LemMa 6. We have

(1) P(R, <7) = Arpu(n) — A;(n), (r=12---),

where
(2) A.(n) = (1/¢) :Z:i (1 — (=1)*) cot® kr/(2¢) (cos kmr/c)™

Proor. From the definition of p.(7, j, ¢) in Section 1, (replacing z, by o =
a + z.), we have, for positive integers a, b,

P(Un<a,V,<bz,=37—a) = paa,j,a+d).
Turther, p.(a,j,a +b) = 0if j < 0orj = a + b, hence,

a+b—1

P(Un<a,Va<b) = 2, pua,j,a+Db).
‘ j=1

=
Moreover, forr = 1,2, -« -,
P<Un + I/n < 7')

=2 {PU.<a,Va<r—a+1) —PU,<aV,<r— a)l.

a=1

From U, + V, = R,, P(U, <7, V, <0) = 0, it follows that (1) holds with
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A(n) = 221> iipa(4, 4, ¢). Using (1.2), the latter formula easily implies
(2).

ReMARK. A formula equivalent to (2) is

An) =277 X7 (;;)fc(n — 2m).

0sm<n/2

Here, f.(z) is defined by f.(0) = (¢ — 1)/2, fe(h) = ¢ — 2h, (h =1, ---,
c— 1)>fc(c) = —C + l,fc(SC + h) = (_l)afc(h)’ (S = 17 27 1h = 17
¢). We omit the proof.

Transforming in (2) the terms with £ > ¢/2 to the summation variable
k' = ¢ — k, we have

[(e=1)/2]
Ai(n) = (1/e) 2 {(1 = (=1)") cot’ kx/(2c)
+ (1 — (—=1)) tan® kx/(2¢)} (cos kx/c)".

Applying Lemma 4 to (3), one may derive the asymptotic expansion of A.(n)
for large n. For convenience, we shall restrict ourselves to the case that, in (3),
n is an odd positive integer, ¢ an even positive integer, thus, from (3),

(3)

c/2—-1
A.(n) = (8/¢) D  cosec kn/c (cos km/c)" M.
k=1’2;0d 2)
In view of (2.1), the latter formula may be written as
c/2—-1 ,
(@ An-D=6p n o (-h @ la),
k=1 n n
k=1(mod 2)
(c and n even), where
(5) a = 7n/(2¢)
and
(6) f(u, w) = cosec® w! "¢,
Here, from Lemma 1,
© u
(7) e = 3 3 Apu'w' ™, (Jw| < 7/4).
p=0 h=0

Further, differentiating the well-known ‘Taylor expansion of cot z about 0,

(8) cosec’wt = w' D O, (Jw| < 7,
v=0

where Co = 1 and

(9) C, = (2v — 1)2”B,/(2v)! (r=12 ),

B, denoting the vth Bernoulli number, (B, = 1/6, --- ; C; = 1/3, C; = 1/15,
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s = 2/189, C; = 1/675, --- ). Hence, from (6), (7) and (8), for |w| <
#°/4 and arbitrary values u,

o

»
wr Y Z B u"w“_h,

(10) flu, w) =
p=0 h=0
where
u—h
(11) Buh = E CvAp—y,h > 0;
here, By, = A, , By = C, (from Ay = 1, Ay = 0 for u > 0), thus, By = 1,

Blo = 1/3 Bu = 1/12 Bzo = 1/15 le = 1/20 B22 = 1/288
TuEOREM 2. Let

(12) Gr = G.(a) = 4(a/m) 2 e (20k%)",
kzllg:tl)d 2
where a is given by (5). For r = 0, 1, - -+ an equivalent formula is
(13) G, = (=1)" X (=1)'H3(kn(2a)7).
k=—o

Then, for each positive integer m and each positive constant K, there exists a con-
stant M > 0, not depending on c or n, such that

m—l

(14) = A,(n — 1) — (8/x)} Zn utH Z (=1)*Bu Gusos
satisfies
(15) | Tw| £ M(e™ 4+ 07" 0¢7(1 + o),

for each choice of the even positive integers n and c.

Proor. Let n, ¢ denote even positive integers, thus, (4) holds true. Further,
let m = 1 be a given integer, K > 0 a given constant, K; a fixed constant > K.
Without loss of generality, we may assume that n* = K; = 1. Let A > 0 be
defined by aA\’. = Kyn'. Then

(16) (m\/c)? = a)\ = 2n'K, £ 2 < #/4,

thus, A < ¢/2. From Lemma 1, ¢(w) = 0 for 0 < w < #°/4, hence, from (6),
the contribution to the rlght hand side of (4) of the terms with & > A is at most
equal to (8/c) (c/4) cosec® ((2/n)ar?)le ™ < (& /2) ((2/n)Kmh) e F1m =
0(e™™). Hence, from (4) and (5),

(17) A(n — 1) = 0(e™*™) + (8/x)(2a/n)}8,

where

S= 3 e—“'“’f(—i*_ (ak2)2,gak2).
1skg) n n
k=1(mod 2)
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We now apply Lemma 4 with 8 = a, 0 = —4/n, 7 = 2/n, p =2, ¢ = 1,
s=1, wy = 4K}, (uo > w arbitrary), w, = 2 < 7 /4 = w,. Then (2.13)
holds, from (16) and (4/n)(aX’)? = 4K? = u; . Moreover, o\ = Kt 2
K, = 1. Hence, in view of (10), Lemma 4 yields

(18) |8 — 8Sn| = Matn(n e ®™ 4 07" (1 4+ &™),

M denoting a constant independent of a and n. Here,

m—1 p

(19) 8= T 3 Bul—a/n)2/my™ 3 (k)

pu=0 h=0 k=
k=1(mod 2)

Thus, if G, is defined by (12), (15) is an immediate consequence of (17), (18)
and (19). That (12) and (13) are equivalent for r = 0, 1, - - -, follows by sub-
tracting the asserted relation of Lemma 5 with 2 = = from that with > = 0.
Remark. In view of (3) and tan’ wt = w4 20'/3 + -, it is easily seen
that, for m < 2, the estimate (15) holds for all positive integers n and c.
Let us introduce the distribution function

(20) Fo(r) = P(R. <r) + P(R. =1)/2

and the quasi-frequency function

(21)  fu(r) = P(Ry =7 —1)/4 + P(R. =1)/2+ P(R. = r + 1)/4.
From (1),

(22) 2F,4(c) = Agya(n — 1) — Ac(n — 1)

and

(23) Afaa(c + 1) = Acps(n — 1) — 24c40(n — 1) + Ae(n — 1).

Hence, applying Theorem 2, one obtains an asymptotic development for the
quantities F,_;(¢) and f.i(¢ + 1), ¢ and n denoting even positive integers.
In order to simplify these expansions, we introduce

(24) (@) = 3 (=B Gupaa(),

(o =0, 1, ---), where G;(a) is defined by (12) or (13), (the latter only for
r 2 0), a ranging through the positive real numbers. From Theorem 2, for

each integer m = 1,
m—1

(25) A(n — 1) = (8/x) gov“(w?n/(zcﬁ’))n-"“ + 0(n™™*)

if n and ¢ are even positive integers, the remainder holding uniformly in ¢. From
(12) and Lemma 3, for each integer r,

(26) G(a) = 0(*(1 + o), (a > 0).
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Moreover, from (12),

(27) B = — (2) (G — (2r + 1)G).
Hence, letting o = 7'n/(2¢") and D = d/dc,
(28) DG.(a) = ¢ (Gryy — (2r + 1)G,),
thus,
(29) D'G, = ¢ (Gryz — (47 + 5)Gryy + (2r + 1)(2r + 2)G,).
In general,
(30) D’Gy(a) = ¢ Z (1) Gris(a),
v=0

(e = 7n/(2¢"), s = 0, 1, ---), where the a,(r) are certain constants, inde-
pendent of n and ¢, which may be computed from the recursion relation a,,(r) =
Gs11(r) — (2r + 2v + 8)asa, (1), (au(r) = 0if » <0 or » > s).

It follows from (24) and (30), that

(31) Ds’y”(ﬂ2n/(202)) = 7#8(7"2”'/(262) )n—S/Z’ (8 = 07 17 o ');
where

(32)  yula) = (2a/7)"" :/:20 ;0 (=1)"Buao(p + b — 1)Guirpra(a).

Here, the functions v,;(a) are explicitly known, for instance, from By = 1,
(12) and (28),

(33) yo(a) = (2/1)%§e_a(2k+1)2(2a + (2k + 1)7).
Further, from (13) and (29),
(34) 'YOZ((I) — 2 Z (__l)k—le—(/c'rr)2/(4a)k2'

k=1

Observe that, from (26) and (32), yu(a) is a bounded function of «, « > 0,
whenever s = 1. Hence, from (31), letting

fuln, €) = yu(n'n/(2¢Y)),
we have, for each positive integer ¢, and A > 0,

(35)  fuln, e+ A) = fu(n, ¢) = Z n Py (mn/ (268)) A% /st 4+ O(A %),

the remainder holding uniformly in ¢. Finally, letting ¢ = 2m — 2u, (22), (23)
and (25) easily imply the following result.
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TaEOREM 3. Let Fo(r), fu(r) be defined by (20) and (21). Then, for each posi-
tive tnteger m, there exists a constant M, independent of n and ¢, such that

m—1 2m—2u—1

|
(36) lF,,_l(c) — (2/m)} ;0 Zl BTV (7n/(2¢°))2°/s!| < MnT"
and
m—2 2m—2pu—1 |
37 facale +1) — (2/m)} go ; n TR 7P/ (2¢9))2°(2°7 — 1) /s!

for each choice of the even positive integers n and ¢, where v,,(a) is defined by (32).
Here, for each p, s = 1, yus(a) 7s a bounded function of a, « > 0.

Note that, from the remark following the proof of Theorem 2,{36) and (37)
hold for each choice of the positive integers n and ¢, provided m < 2. From (36),
applied with m = 2, we have F..i(¢c) = (8/7) (va(a) + n'}'yog(a) +
7 (yu(a) + 2v0(@)/3) + 0(n?Y), with a = 7'n/(2¢%), especially, from (33),

(38) F._i(c) = (8/7%) g’e—’”“’“‘”“’“(wﬁn/& + (26 + 1)) + o).

Further, from (37), applied with m = 2,
faale + 1) = (&/m)}n ym(a) + 20 yu(a)) + O(n™),

with a = 7'n/(2¢"), especially, from (34),
(39) facale — 1) = 8(2m) 7 37 (—1)* e *MVEE + O(n7?).
k=1

As was shown by Feller [2], ef. also Darling and Siegert ([1], p. 638), the slightly
weaker result, obtained by replacing in (39) the remainder 0(n?) by o(1),
holds whenever the ¢, are independently and identically distributed random
variables, E({.) = 0, Var(f,) = 1.
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