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1. Summary and introduction. Let 2, (t = 1,2, - - -) be defined recursively by

(11) .’c,=ax,,_1+ug, t=1,2,"‘,
where o is a constant, &u; = 0, &u} = ¢’ and Suu, = 0, ¢ # s. (& denotes mathe-
matical expectation.) An estimate of o based on z;, ---, zr (which is the

maximum likelihood estimate of « if the u’s are normally distributed) is

(1.2) & = (‘Z:; x,xH)/ (é xf_1>.

If o] < 1, +/T(& — a) has a limiting normal distribution with mean 0 under
fairly general conditions such as independence of the u’s and uniformly bounded
moments of the u’s of order 4 4 ¢, for some ¢ > 0. (See [2], Chapter II, for
example.) If || > 1, White [3] has shown (& — a)|e|” / (o’ — 1) has a limiting
Cauchy distribution under the assumption that 2o = 0 and the ’s are normally
distributed; he has also found the distribution when z, # 0. His results can be
easily modified and restated in the following form (3 i—; zi—1)*(& — «) has a
limiting normal distribution if the u’s are normally distributed and if le] #= 1.
Peculiarly, for |a| = 1 this statistic has a limiting distribution which is not
normal (and is not even symmetric for o = 0). One purpose of this paper is to
characterize the limiting distributions for |a| > 1 when the u’s are not neces-
sarily normally distributed; it will be shown that for |a| > 1 the results depend
on the distribution of the w’s. Central limit theorems are not applicable.

Secondly, the limiting distribution for |a| < 1 will be shown to hold under
the assumption that the w’s are independently, identically distributed with
finite variance. This was conjectured by White.

2. Asymptotic distributions in the unstable case. Here | « | > 1. Let

T T T
(2'1) Ar = ; ZtTt—1 — @ ; x%—l = }1; Ut Xt—1,

T
(2.2) B, = }1: z.

Then & ~ a = Ay/Br. Note that
Ty = a1 + U = a(ates + ) + U = -+ -
= U+ Uy + -+ + at—_l’lld + atxo .
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Let 8 = 1/a and let

(24) 2o =81 = w + Bus + -+ + B 2wy + aze.
It is easily verified that &2, = ax and Varz, — ¢*/(1 — 8°) as T — .
TaEOREM 2.1.

: - 1
(2.5) plim (ﬁ” "Br — 7— ﬁgzi) = 0.

Proor. We shall show that

Frop, I .

-7
(7-2) 1 - ﬁ 1—-p67, 1 2
(26) = ﬁz B — [32 + 1—F 2r — sz
T—l 2 BﬁT 2
= a;ﬁz (ZT—C ZT) - 1—'—6_2ZT
converges stochastically to 0. From (1.1) and (2.4) we find
(2.7) 2= 21 + B U,
and hence
(2-8) Ry = BT“2UT—1 + ﬁr_sur—z + -0+ ﬂT_s_lu1'~s + 27 .
We shall use the results that
B(ZT_, _ zr)z - 0'2[ﬂ2(T_2) 4ot ﬁZ(T_'_D]
(2.9) gD
<d T
&(27—s + 27)* < 2827_, + 2627
(2.10) \ g
§48zré4( B2+axo
Then
(7—2) 1-87 , S o 2 2
8132 BT—T_:T32—ZT = éﬁglzf'—a_zrl
-1
= 21 '3238' (27— + 20) (275 — ZT)I
i
(2.11) < 2 B08(er + 20)'8(2rs — 2r)!

a‘2 i g
=2 (1 ﬁz + a%v%) 32)* Z Iﬁ |T+ '

< 2(——"2 + a2.7:2)§ o 181"
=\i-p ) @ =m1 =8l
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By Tchebychefi’s inequality

1 _ 621.
(2.12) Pr{ BBy — T — 5 zr

where K is a constant, and for T sufficiently large this is arbitrarily small. Since

>d <X,

B2T
(2.13) 85 < 67C
for C a suitable positive constant, the term in (2,6) converges in probability to 0
and the theorem follows.

The convergence in (2.5) is also with probability 1. The sum of (2.12) for
T = 1,2, --- converges and similarly for (2.13). Hence, by the Borel-Cantelli
Lemma (2.6) converges to 0 with probability 1.

It should be observed that zr will have a limiting distribution. (In fact

T 8 Pu, converges in the mean and with probability 1. ) It will also be noted
tha t B*" B, is in the limit a nondegenerate random variable; if B**? is re-
placed by a function of 7' that decreases faster, then the resulting random variable

converges stochastically to 0.

Let |
(2.14) Yr = ur + Buzy + -+ + B %y + 87 My
THEOREM 2.2,
(2.15) plim (8"7Ar — yzr) = 0.

Proor. We have
T—1

BT’J‘)AT - yTz'l' = El BauT—s(zT—s - ZT)~

Then
T7—1
& 8" Ay — yrer| < Z; B' funs(zrs — 20)]
T—-1
(2.16) < 3 |BlTeus-8(ers — 22)')

\/1—_522 |13|T_1
= =5 (T - D"

Since (2.16) converges to 0, the Tchebycheff inequality implies the theorem.
Since the sum of (2.16) for T = 1, 2, - - - converges, the Borel-Cantelli lemma,
implies convergence with probability 1.
It will be noticed that yr has the same form as zr except for 2 and the order
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of the w’s is reversed and there is one more term. Under the assumptions we
have made yr does not necessarily have a limiting distribution. For example,
ur makes a not negligible contribution to yr ; if the u’s are independent and if
the sequence of distributions of ur is wildly fluctuating, yr will not have a
limiting distribution. However, if the u’s are independent and identically dis-
tributed, yr has the same limiting distribution as zr for 2y = 0. The covariance
between yr and zris (T — 1)o’8" ", which converges to 0.

TuEOREM 2.3. If the w’s are independently distributed, and if yr has a limiting
distribution, then (yr, 2r) has a limiting distribution, say the distribution of
(y, 2), and y and 2 are independent.

Proor. Let, -
(iT
(2.17) 2r = aiy + ‘Z; By,
-1
(2.18) Zr = By, )
t=[4T1+1
T
(2.19) yr= 2, B 'u,
t=[§T]41
[ir}
(2.20) gr = 2 8" "ue,

t=1

where [47] is the largest integer not greater than 7. Then 27 and y7 are inde-
pendently distributed because they involve disjoint sets of u’s. We have

&(zr — 2%)? = 842

T—1
2 (t=1)
(2.21) = ¢=[§1;]+1B2
< 026237'] < G_ZIB 'T—l
ST-F=T1-F

&(yr — y;)2 = 8?73'
[3r]
= & E gHT=Y
=

a_2ﬁ2(T—[}T]) < 0_2 l B ‘1’
1—-p/ T 11—
Then zr — #y and yr — y» converge stochastically and with probability 1 to 0

and the theorem follows.
TuroreM 24. If (yr, zr) has a limiting distribution, say the distribution of
(y, 2) then (8" *Ar, (1 — 88" " ®By) has a limiting distribution, the distribution

of (2, &").

! This theorem as well as several other points, was suggested by Julius Blum.

(2.22)

IIA
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TrEoREM 2.5. If (yr, 27) has a limiting dustribution, the distribution of (y, 2),
and if Pr{z = 0} = 0, then [@"/(a® — 1)](& — @) has as a limiting distribution
the distribution of y/z.

THEOREM 2.6. If the u’s are independently normally distributed, the limiting
distribution of (yr, 2r) is normal with variances ¢°/(1 — 8), correlation 0,
& = 0and 82 = axy.

It will be observed that if the u’s are independent, and not all normally dis-
tributed, then zr does not have a limiting normal distribution. For example,
U i not negligible; if it is not normal, z is not normal (since a convolution is
normal only if the two component distributions are normal).

In the case of yr, if all the u’s beyond some ¢ are normal and independent,
then yr will have a limiting normal distribution. If the u’s are independently
and identically distributed, then yr has a limiting normal distribution if and only
if the u’s are normally distributed. If « is an integer and if the w’s are inde-
pendently distributed according to a rectangular discrete distribution over
0,1, ---, @ — 1, then the limiting distribution of y is (continuous) uniform on
(0, @). It will be noted that central limit theorems are not applicable here.

Tarorem 2.7. If the w's are independently normally distributed and if zo = 0,
[a"/(o® — 1I(& — a) has a Cauchy distribution as a limiting distribution.

THEOREM 2.8. If the w's are independently normally distributed
Ozl @ — a) has e limiting normal distribution with mean 0 and variance o>

TaeorEM 2.9. If the u’s are independently normally distributed, the limating
moment generating function of 8 *(1 — *)Ar / o* and 2" ®(1 — 8°)°B, /s

1o — a2t U242V ]
o 1-0r=2v]|"

(2.23) (1 -0 -2v)* exp[

Proor. We have

g e(Uyz+Vz2)(1—ﬂﬂ) a2

© © 2
_ [ 1-g ¢ HIBD WA —a20)2) /02 4+ (Uys-+722) (1—62) o2 dy dz
(224) ) ) 21!'0’2
© © 2
_ [ 1—-p 1B W20 12722 —2eam+adad) ? dy de
) 0 211'0‘2

which is (2.23). This was given by White [3].

Theorem 2.8 permits setting up tests of hypotheses about a and forming
confidence intervals for a if the w’s are independently normally distributed.
In the case of |« < 1, the result holds without the assumption of normality
(see Section 4). It should be emphasized that statistical procedures based on the
asymptotic normal distribution of (2 2}_;)*(¢4 — @) have wide scope when
|| < 1 but when |a| > 1 are justified only if the ’s are normal.

Ifa=1,2 = Zf %s + o and the numerator of & — « is
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Ar = Z Utls—1
(2.25) = E Uy + Z UTo

st
= H( w) — 2wl + %D .

In this case the normalization factor is 7% Then

(2.26) %AT =3 u/NVT)? =32 ul/T + x0 2 uy/T.

If the w’s are independently and identically distributed, Y u,/ T converges
stochastically to &u, = 0 and Y u} / T converges stochastically to &u} = o7,
and D u, / /T has a limiting normal distribution with mean 0 and variance o*.
Thus the limiting distribution of A /T is that of 22° — 1¢°, where z has a normal
distribution with mean 0 and variance ¢°. From this it is clear that 4, multiplied
by any nonnegative function of the observations cannot have a limiting normal
distribution since

(2.27) lt_im Pr{d, £ 0} = Pr{z’ < ¢}

which is not 3. White has observed that if the w’s are independently normally
distributed and if 2, = 0, the limiting distribution of

(2.28) T(é — a) = %
is that of
(2.29) %"—2(1);1

f 2 (t) dt

0

where z(t) is the Wiener stochastic process with &z(¢) = 0 and &z*(t) = ¢. and
he has given the limiting characteristic function of (Ar/T, Bz/T").

It might be noted that in the case of |«| > 1, the condition &u; = ¢ could
be replaced by the condition &u; = ¢; < M for some M. The results would
involve such modifications as replacing o°/(1 — 8°) by

20 B [<M/(1 — 8Y)].

3. Asymptotic distributions in the unstable vector case. Let x; and u: be
p-component column vectors and a a p X p matrix. Let the process be defined
by (1.1), where 2, is a vector of constants, &u; = 0, Suur = = and Suu, = 0,
t # s. The estimate of a is

(3.1) &=, e ( D)

The process is stable if all the characteristic roots of & are less than 1 in absolute
value; we shall consider in this section the case that all p characteristic roots
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are greater than 1 in absolute value. The methods for the scalar case can be used
here, but the results are more complicated. A more general case would include
matrices @ with some roots less and some roots greater than 1 in absolute value,
but this would be much more involved.

Let
(3.2) Ap = D a@iy — a), Cati,
(3.3) Br= Y. %sti,
(3.4) 2r = o " P,
=w+aup+ o+ o T Pur + azo,
(35) e =3 u tam,
(3.6) Fr = 2rp + o '2r2ra™ + - + o " Pagepa "V,
(3.7) Gr = urzp + ur_sera™” + -+ + wzza” T
Then
(3.8) & —a = ABr.
TarorEM 3.1.
(3.9) plim (&~ " Bra” " = Fr) = 0,
TaEOREM 3.2.
(3.10) plim (Apa"®' — Gy) = 0.

These theorems are proved by methods similar to those used for Theorems 2.1
and 2.2. The convergence in each case is also with probability 1.

Suppose that « is a matrix such that there exists a nonsingular matrix ¢ such
that

(3.11) cac! =\,
where \ is a diagonal matrix with the characteristic roots of o as the diagonal
elements. Then @ = ¢ A¢, @ = ¢ N7%, and @™ = ¢ \"c. Let \™' = . Then

Fr = 2127 + ¢ yezrepcye™ + - -
(3.12) + ¢y eznercy" ¢
= c;l(czrz;c' + - 4 'yT—lcsz'Tc’yT'l)c"".
The 7, jth element of the matrix in parentheses is the 7, jth element of cerznc
multiplied by
1 — (yavs)”

(3.13) L vy + oo (o)™ = 22
- YiYi

b
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where v; is the 7th diagonal element of v. This converges to 1/(1 — v.v;). Then
the 7, jth element of c¢Fr¢’ is asymptotically the 7, jth element of czz’c’ divided
by 1 — v:v;. Let T be the matrix with 1/(1 — vsv;) as the 7, jth element, and
let Zr be a diagonal matrix with 7th diagonal element equal to the 7th element

of czr.

CoOROLLARY 3.1.
(3.14) plrig;(FT — ¢'Z,;TZ.c7Y) = 0.

Now consider
(3.15) r = uTz'T/+ uT_lz;c';yc'” 4+ -+ u,/z;c"yT—lc_ll'

= (UrerC + UpazrC'y + -+ + wzrc'y" ).

The jth column of the matrix in parentheses is the jth element of 2’¢c’ times
(3.16) Up + yiury + o0 v Cug.

Let this be the jth element of a matrix Y.
COROLLARY 3.2.
(8.17) plim (Gr — Y7Zc ™) = 0.

T

It should be noted that v and ¢ do not need to be real, but ¢ 'Z,I'Zz¢" and
YrZrc Y will be real. In fact the diagonal elements of Zr are the elements of
czr , where ¢ is complex and z, consists of real random variables. The elements
of Y are complex linear combinations of real random variables. When we speak
of Y, having a limiting distribution we mean the set of real random variables
has a limiting distribution. (The coefficients of the linear combinations remain
fixed.)

TuroreM 3.3. If the u’s are independently distributed and if Y r has a limiting
distribution, then (Y, Zr) has a limiting distribution, say the distribution of
(Y, Z), and Y and Z are independent.

TaroreMm 3.4. If (Yr, Zr) has a limiting distribution, say the distribution of
(Y, Z), then (Ara” "', a " PBra™"?") has a Umiting distribution, the dis-
tribution of (YZc™, ¢ZTZc¢™). :

TaroreM 3.5. If (Yr, Zr) has a limiting distribution, the distribution of (Y, Z),
if the probability is 1 that each diagonal component of Z s different from 0, and if
T' 7s nonsingular, then (& — @)™ has as a limiting distribution the distribution
of YI™'Z7c.

It may be noted that T' is nonsingular if and only if the characteristic roots of
a are all different. Since a diagonal component of Z is a linear combination of the
components of 2, all the diagonal components will be different from 0 with proba-
bility 1 if the probability is O that the components of z satisfy a linear relation.

TaeorREM 3.6. If the w’s are independently normally distributed the limiting
distribution of (Yr, Zr) s that of (Y, Z) where Y and Z are composed of linear
combinations of two sets of independent normal variables.
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The mean of 2 is axy and the covariance matrix is

Ecikaklcjz
(3.18) P e —

1 — v
The mean of Y is 0. The covariances are harder to describe. Let w be an arbitrary
real p-component vector and let W be the diagonal matrix with the elements of
cw as the diagonal elements. Then the covariance matrix of the 7th and jth rows
of YW¢™ is ois¢ " WITWe ™.

We can give a kind of analogue of Theorem 2.8. In the scalar case, if the u’s
are independently normally distributed, o'"® (& — a) and Bra *""® have as a
limiting distribution, the distribution of y/z and #°; this limiting distribution
has the property that the conditional distribution of y/z given # is normal with
mean 0 and variance ¢°/2". In the vector case if the u’s are independently nor-
mally distributed and the characteristic roots of « are all different, (& — a)a'™™
and o " ?Bra "' have as a limiting distribution the distribution of YT™'Z 7%
and ¢'ZTZ¢™"; this has the property that the conditional distribution of
YT'Z ¢ given Z is normal with mean 0 and covariances = X z(¢"ZTZ¢ ™')™
This result can be used to justify the usual procedures of testing hypotheses and
confidence intervals when the above conditions are satisfied.

The mth order scalar difference equation can be treated by writing it as a
special first order vector equation by letting the vector z: be made up of the
scalars (x;, i, - * , Te_m+1), and the mth order vector case can be treated
similarly.

4. Asymptotic distributions in the stable case. In this section we assume that
the w’s are independently and identically distributed and that | | < 1. Then
we show that /T (& — a) has a limiting normal distribution. The important
feature here is that the variance of u; is assumed finite, but nothing is assumed
about moments of higher order. Diananda [1] proved a result similar to this
when a = 0.

THEOREM 4.1. The limiting distribution of Ar/A/T is normal with mean 0 and
variance o*/(1 — o).

Proor.

T L d r
(4.1) 4, = § U U1 + g UgUsg + -+ + aT—zuTul + z ; at_lu,.

The last term has mean 0 and variance zgo’(1 — o’*)/(1 — of); this divided
by T converges to 0, the random term converges stochastically to 0 and can be
neglected. Let

T
(4.2) Ar = A — 2 2 o .
1

Then A7 is a linear combination of terms wu,, ¢ ¥ s. Each term has mean
su, = 0 and variance &(uw,)’ = Sufui = o*. Each term is uncorrelated with

each other term.
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Let

T T T
(4.3) Crs = Z Uy + @ E UeUiz + - + o’ E Ut Us—s—1

2 3 t=84-2
for S T —2andletCrs = Arfor§ > T — 2. Then A7 — Cr,s hasmean 0 and
variance bounded by

4 2(S+1)
g

(44) T - (S+ 2.

Then A*/A/T — Cr,s/+/T has mean 0 and a variance bounded (uniformly in 7)
by ¢'a®**™/(1 — o). This can be made arbitrarily small by making S suffi-
ciently large. Now let

(4.5) C:,s = sé [weters + oUethss + -+ + o usts_s_].
The limiting distribution of C7.s/A/7T is the same as of Cr,s/A/T. Let
(4.6) Yi = Uy + aUes + -+ + Uty .
Then
, 1 — s,
(4.7) Syt = q—=
(4.8) &Yy, = 0, t s,

and y; is an (S + 1)-dependent sequence. Theorem 4.4 below applies, and hence
C%.s/A/T has a limiting normal distribution with mean 0 and variance (4.7).
Theorem 4.5 below completes the proof.

THEOREM 4.2.
(4.9) pliim B7/T = /(1 — ab).
T->0
Proor.

T
By = }l:xﬁ_l = 20 + (w1 + ox0)® + (s + 0wy + ’x)°

+ o0+ (Uror + oura + o0 + Q" )’

(4.10) = +a+ -+ + o Fupy]
+ 2a(ugs + * -+ + UrgUr_s) + -+ + @ ur_gw)
+ 2mfui(a + & + o+ + ) + o0+ " ur
+aill + o’ 4 - + ¥,

The last term divided by T converges to 0. The next to last term has mean 0 and
variance bounded by a constant times 7'; when this term is divided by T it
converges stochastically to 0. The second bracket has mean 0 and variance
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(T —2) + AT =3+ -+ + P
<Tel+a+ - 1=Ts/(1 — ).

This term divided by T converges stochastically to 0. Thus Br/T has the prob-
ability limit of the first bracket divided by 7. But

(4.11)

1 T-1 -
s 2l = A o e @)
(412) = w7V 4 @ ) s Ul +at )
. 2(r-1) az' \
=u11—-—.—_——‘-x—2+...+1_a2u7'_1.
This is a nonnegative random variable with expected value
1 2 2T-D)y 2 & 1=,
C N v e s gy

and divided by T converges to 0. Thus
-1
Sa

(4.14) -
QA-T 1-—2a

Br

T

by the law of large numbers.

TaroreM 4.3. The limiting distribution of \/T(& — a) is normal with mean 0
and variance 1 — o,

Proor.

. _ Ar _ Ag/\/T
(4.15) VT (& — a) = ‘/T’B_T‘_BJT"
~ This proof exploits the fact that the second-order moments of Ar involve
only the second-order moments of the u’s (because Ar only involves products of
independent u’s) and that a special central limit theorem applies. The result
can easily be extended to the vector case, where the characteristic roots of the
matrix « are less than 1 in absolute value. In turn this permits extension to the
general-order difference equation (scalar or vector) in the stable case. The
case of

= plim

plim

(4.16) Ty = Al + Y + U
again can be treated this way. However, the case of
(4.17) Xy = alt—s + Y2 + Ut ,

where z, is a sequence of fixed variates, will not in general yield to this treatment
(unless restrictions are made so that asymptotically z; washes out); the reason
is that in addition to terms like u.u,_; there will be terms .2, and these will
not be identically distributed.
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The following central limit theorem was given by Diananda:

TueEoREM 4.4. Let vy, Y2, -+ , be a sequence of random variables such that the
distribution of (Yeve,, Yerts, *°° > Yi+tn) ©S tndependent of t for every & <
th < -+ < t.(ty = 0) and n and such that this collection is independent
of (Ystsy s Ysbszs 5 ?/8+ap) Jor every 81 < 8, < -+ < 8p(81 2 0) and p if s >
t + t, + m. Assume 8y, = 0, 8yt < . Then 2.1 y./A/T has a limiting normal
distribution with mean 0 and variance

(4.18) ey: + 28ywe + -+ + 28Ymis -

The sequence y; is called m-dependent. The proof depends upon a theorem
proved by Diananda, which is similar to the following 2
THEOREM 4.5. Let

T=12---,
(4.19) Sr = Zir + Xir,
k=12,---,
such that
(4.20) &Xir £ My,
(4.21) lim M, = 0,
k»o0
(4.22) Pl‘{Zkr =< 2} = sz-(z) - Fk(Z), as T — «©,
(4.23) B;ka(z) = F(z)

at every continuity point. Then
(4.24) lim Pr{Sr < 2} = F(2)

T->00
at every continuity point of F(z).
The. condition on X, is essentially that it converge stochastically to 0 uni-
formly in 7.
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