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1. Introduction and summary. Let F,(z) be the empirical ¢.d f. of n independent
random variables, each distributed according to the same continuous c.d.f. F(x).
The major object of this paper is to obtain in explicit form the probability law
of the random variable

Di(y) = sup {F.(x) —vF(2)}.
—00 Lz <%0

It is no loss of generality to suppose that F(z) is the.c.df. of the uniform dis-
tribution on [0, 1], so this assumption will be held throughout the paper.

When v = 1, then Df(1) is the usual one-sided goodness of fit statistic whose
asymptotic distribution was first derived by Smirnov [6]. We obtain in several
different forms (formulas 2.2 and 2.3) an expression for

P(Di(y) < a) = P(Fu(z) Sa+v2,0=2 = 1).

Formula (2.2) agrees with the one found by Birnbaum and Tingey [2] when
v = 1, which is the “‘classical’’ case. As a matter of fact, it seems to have been
overlooked that this formula, for finite n, had already appeared in a paper by
Smirnov [6]. The new formula (2.3) would seem to involve fewer computations
for actual numerical evaluation. One rather remarkable fact which results from
(2.3) is that

) 1
P(Fu(z) Sv5,0 sz =1) ={' "5’ v>1

07 'Y§17

for any n. This was noted by Daniels [4] and was rediscovered by Robbins [5].
Using (2.3) it is easy to evaluate lima.oP(Fa(z) < a(n) + yx) where
v, (¥ > 1) is fixed and a(n) = d/n, where d is fixed. The limiting distribution
when v > 1 can be used to derive some facts about the Poisson Process which
were recently discovered by Baxter and Donsker [1].
The methods used are elementary. To assist the reader, the results are all
listed in Section 2 and Section 3 is devoted to giving proofs.

2. Statement of results. First a few pieces of notation are introduced. Let

Pu(a,7) = P(Fa(z) < a+ vz, 0 Sz 1) = P(D3(v) <a),
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and let

oo = ()5 (- () (05

For simplicity, whenever it is reasonable to do so, P, and C.(z) are used instead
of the more complicated symbols.
It is assumed hereafter that

(2.1) 0<a<l, a+vy>1, vy >0,
for otherwise P, becomes trivially either 0 or 1.
THEOREM 1:
k
(2.2) P, =1— 3 Ca(s),

=0

or, equivalently,

n

(2.3) P, = 2 Cu(d),
i=kt1
where the integer k is defined by
Feqoa <kt
n n

Remark on Theorem 1: When v = 1, formula (2.2) agrees with the result of
Birnbaum and Tingey. However, when a is of the order of 1/ Vn, (2.3) will
usually require many fewer values of C,(z) to compute. For example, for n = 50,
Table 1 of [2] indicates that a varies roughly between % and %, for those proba-
bilities ‘‘interesting’’ for statistical applications. Hence the number of C,(7)
terms to be computed using (2.3) ranges from about 37 to 42 for these a’s,
whereas using (2.2) the range is from 7 to 12 terms.

Setting a = 0 in (2.3) yields a

CoroLLARY TO0 THEOREM 1 (Daniels [4], Robbins [5]):

1
1-=, > 1,
1) = v v
0, ¥ = 1.

It is interesting that this result does not depend on n.
TureoreM 2: Let a = d/n, where d is a fixed positive real number, and let v be
greater than 1. Then

(2.4) lim P,(d/n, ) = (1 _ %) $ (Z - d),. e

n—>00 =0 '&! Y

IIA

P(F,(z) <vyx, O0Zzx

Remarks on Theorem 2:
a) The interesting fact here is that when v > 1 the proper norming for a
requires it to be of the order of 1/n rather than 1/4/n as in the case v = 1.
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Contrary to what one would expect, the derivation is much more elementary
when v > 1 than when v = 1.

b) The right hand side of (2.4) is the same as an expression obtained by
Baxter and Donsker [1] in connection with the Poisson process. Theorem 2
immediately gives the same result which is summarized in the following corollary.

CoRroOLLARY TO THEOREM 2: Let Y (1), 0 < ¢ < o be the Poisson process with
stattonary and independent increments and parameter N > 0, and Y (0) = 0.
Let v > N\, and d be positive. Then

_ A2 1Y i () @)
P(Yt) <d+7,0=t< o) = 1——22-‘ (5 — d)’e .

Y/i=02! \Y
3. Proofs.
1. Proof of Theorem 1, equation (2.2). The basic idea used in the proof is the
following:let 2; < x2 < --- < x, be the ordered values of n independent random

variables, each uniformly distributed over (0, 1). Then, it is well known that
given z,, the conditional distribution of

T1/Tny Lot/ Tn

is that of the ordered values of (n — 1) independent random variables, each
uniformly distributed over (0, 1). Using this fact it is easy to verify the following
conditional probability statements:

P(F.(x) <a+yx|x, =1t)

1, if 1—5—3<tand "_lsagl,
n n . l1—a n—1
= n_l(ma,n_lyt), if p” <t and a< ,
0, if t<l=@
Y

Using the fact that the frequency function of z, is

n™, 0=t 1,
0, otherwise,

we have the basic recursion relationship

1
f an-;< n a——l—%——'yt)nt”‘ldt, ifa <™ 1
1—a n
Y

n—1"n—1
(31) Puay) ={ |

nt”_ldt=1—(1;a>, "~ leg<t

1—a
Y

An induction argument can now be applied to prove (2.2). Its truth is trivially
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true when n = 1. Assume now that it holds for arbitrary n. By this induction
hypothesis,

. k
Pn(n+1a,n+17t>=1—ZCn<n:1a,n;tlvt,i),

n n 1=0

where k is defined by k/n £ 1 — ((n + 1)/n) a < (k + 1)/n, or equivalently
by (k4+1)/(n+1) £ (1 —a) < (k+ 2)/(n + 1). By a routine, but tedious,
computation which is omitted

1
Joe a2y iyt 1) e di = Conlami+ 1)

n n

¥

Hence, applying (3.1), it follows that (2.2) is true for n + 1, which completes
the proof of the first part of Theorem 1.

I1. Proof of Theorem 1, equation (2.3). This follows from 2.2 by means of part
a) of the following lemma:

LemMa:
2) 30 =1
S n \ 7 o\ n—i—1 n
b 5 () @9 @9 = Ut BB =)

Z 1 n i o n—i—1 1
2 §H4Q)m+nw—w “ A DE-—DGTD

- [(A+B)"(4+B—-—n—-1)— (B+1)"(B —n)]

o> (Jj- 1) (4 4 (B — = = A B = (B DT

=0

where A # 1, B 5 n. Part b) is a formula of Abel’s which is referred to in Lemma
1 of [3]. Part ¢) is proved in [3]. Part d) is proved by writing

g"l (J-t 1) (A + 7B —Hr

—HD) Y (”) (A+§)(B—j"" -3 (") (A+3)(B—j)",
=0] + 1 J =0 \J

and by then applying b) and ¢). Part a) now follows from d) as follows. Cr(%)

can be expressed as '

Cn(z) = (an)n (n —_ng — 1 — (’L - 1))'»-—-1-(1'—1)

.(ny—n+na+1+(i—1))“’(”L'f—:yz;l)((i_;‘)+l).

»
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Nowleti — 1 =j,ny —n+mna+ 1= A,n— na — 1 = B, then

Z N 1 'y+a—1""1 o\ n—1—j
S0 = i (e E (1) v -
and a) follows from d) by routine algebra. The lemma is completely proved.
Now part a) of the lemma immediately implies (3.2), given the truth of (3.1).

II1. Proof of Theorem 2. This follows in a routine way from (2.3).

IV. Proof of corollary to Theorem 2. It is sufficient to suppose that X = 1, the
general case easily following from this special one.

Let A(T) be the event that

Y (t) d t '
Fm = vim 7o 0521},

where Y (¢)/Y(T) can be defined as 0 if Y(T') =
According to the well-known relationship between the Poisson process and
uniformly distributed random variables,

P(A(T) | Y(T) = n) = Pu(d/n,v), n

1%
i

Hence

—TTn 0 —T n
= 3 Pala/my) S r.

PA(T)) = S P(A(T) | 7(T) =

Since P.(d/n, v) approaches the right side of (24) as n — o, and
since Y n_o€ "T"/n!—0asn — « for any fixed r, an easy argument proves that

P(A(T)) —» lim P,(d/n,v) as T — .

Since Y (T')/T converges to 1 with probability 1, it is not hard to show that
lim P(A(T)) = P(Y(t) £d + v, 0 =t < =),
T->0

which completes the proof.
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