EFFECT ON THE MINIMAL COMPLETE CLASS OF TESTS
OF CHANGES IN THE TESTING PROBLEM!

By D. L. BURKHOLDER
Unaversity of Illinois

1. Summary and introduction. A question of interest in connection with
many statistical problems is the following: Does a slight change in the problem
result in a different answer? Here the effect of changes in the testing problem
on the minimal complete class of tests is investigated. The effects of such changes
are found to be different for the two families of distributions considered: The
discrete multivariate exponential family and the continuous multivariate ex-
ponential family. In Section 2, it is shown that with respect to the discrete
exponential family, the minimal complete class of tests for a standard testing
problem is minimal complete for a wide variety of related problems. In Section
3, an example is given showing that with respect to the continuous exponential
family, on the other hand, the minimal complete class of tests for a standard
problem is not necessarily minimal complete for a slight variation of this prob-
lem. Tests that are admissible for the standard problem are not necessarily
admissible for the variation.

Partly in a general decision theoretic framework and partly with respect to
specific examples, Hoeffding [2] has discussed the effect of changes in the family
of probability distributions on the minimax solution and other optimal solu-
tions. He has also given key references to the extensive literature on the per-
formance of standard procedures for families of probability distributions not
satisfying all the assumptions under which the standard procedures were de-
rived. Workers in this area have primarily concentrated on the effect of changes
in the probability model on a single solution rather than on a class of solutions,
for example, the class of admissible solutions, as we do here.

We recall some basic ideas. Consider the probability structure (X, @, P,
©) where  and Q are sets, @ is a o-field of subsets of &, and for each 6 in €,
Py is a probability measure on @. Relative to the above structure, a testing prob-
lem is an ordered pair (wo , w1) of disjoint subsets of Q. A test ¢ is a function from
& into [0, 1] measurable with respect to @. The test ¢ is used in the following
way: A random element X with values in & having P, as its probability dis-
tribution is observed. If z is the outcome then the hypothesis H: 6 & w is re-
jected with probability ¢(z) in favor of the alternative A: 0 € w; . If the test ¢
is used and 6 is the parameter, then the probability that H is rejected is Epp =
Jax o(z) dPs(x). If ¢ and ¢* are tests, then ¢ is at least as good as o* if

Ew — Ep* = 0
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for §in wo, = O for 6 in w;. The test ¢ is better than o* if ¢ is at least as good
as ¢* but ¢* is not at least as good as ¢. A test ¢ is admissible if there is no test
better than ¢. A class of tests is complete if to each test not in the class there
corresponds a test in the class which is better. A class is minimal complete if it
is complete and no proper subclass is complete. The notions, “essentially com-
plete” and “minimal essentially complete,” are defined similarly with “at
least as good” substituted for ‘“better.”

2. The discrete exponential case. Let & be a countable set, k a function from
X into the positive numbers, and s and ¢ functions from 9 into the real numbers.
Let Q be the interior of the set of points 8 = (6;, 6:) where 6, and 6, are real
and satisfy

(1) Z h(x)e018(z)+02t(z) < o,
ze)

For 6 £ Q, let k(6) be the reciprocal of the left hand side of (1),
po(x) = k(8)h(z)e @10 @,

z e, and Py(A) =2 e po(z) where 4 ¢ @, the collection of all subsets of <.
For the testing problems considered here, the parameter 6, is the more important
one, the parameter 6, usually being a nuisance parameter. To keep the discus-
sion more compact we limit our attention here to the case of one nuisance param-
eter although results similar to those that follow are obtainable in much the
same way for the case of more than one nuisance parameter.

Assume throughout this section that any nonempty subset of

Y = {t(z) |z e}

contains a least element. For y e Y let 4, = {z|t(z) = y}.

Let C be the class of tests such that ¢ is in C if and only if there is a function
¢ such that o(z) = 1 if s(x) > ¢(t(z)), = 0 if s(z) < c¢(i(x)), z e %X. Let D
be the class of tests such that ¢ is in D if and only if there is a function ¢ and a
function d such that o(x) = 1 if s(z) < c(¢(z)), = 0 if c¢(¢(z)) < s(z) <
d(t(z)), = 1 if s(z) > d(t(x)), z & X.

THEOREM 1. Let (wo, wi) be a testing problem relative to the above described
probability structure (X, @, P, @) such that for i = 0, 1, the set {(¢", ™) | 6 & w}
has a limit point (M;, 0) where

inf {6, |0 ¢ Q < log M, <log M, < sup {6, 6¢9}.
Then no test in C is better than some other test in C. If, in addition,
sup {61 | 0 € w} < inf {6, ] 0 € wi},

then C is minimal complete.

Proor. Let C be the class of all tests in C' that are functions of z only through
s and ¢. Thus, if ¢ is in Cy then ¢ has the form ¢(z) = 1 if s(z) > ¢(t(z)),
= a(t(x)) if s(z) = c(t(z)), = 0 if s(z) < ¢(t(x)). If ¢ is in C then by the
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theory of sufficient statistics or by an easy calculation there is a ¢¢ in Cy such
that Egp = Espp , 0 € Q.

Suppose that ¢ and ¢* are tests in Co and that ¢ is at least as good as ¢*.
If we can show that ¢ = ¢* implying that ¢ is not better than ¢*, then the first
assertion of the theorem will follow.

Let ¢(x) = [p(x) — ¢*(x)]h(x). Suppose that it is not true that ¥(z) = 0,
x £ X. Then let y be the least element z of Y not satisfying ¢(z) = 0, z ¢ 4, .
Then since ¢ is at least as good as ¢*,

0 02 (t(z)—
Zu[z(x)e 18(2) +02 (¢(2)—) < 0, 0€wo,
zel
= 0,08(.01,

so that taking limits of both sides as (™, ¢”*) — (M., 0) with 6 £ w; gives
(2) @M <0 =D p(a) M@,

zEAy zEAy
provided it is permissible to interchange this limiting operation with the sum-
mation here. That this is permissible follows from the dominated convergence
theorem, since there are points 6° = (6,1, 6i2), ¢ = 0, 1, in Q satisfying 8 <
log M; < 6y, =0, 1, and G = D ; he"* 12 gatisfies D pen G(z) <
and | ¢e”* Y | < @ for 9 satisfying

0n < 6, < b4, 0 < min 6,5 .

Since ¢ and ¢* are in C, either y(x) = 0, xed,, or Y(z) <0, zc 4,.
Thus, by (2) we have that y(z) = 0 for z ¢ A, . But this contradicts the defi-
nition of y. Hence y(z) = 0, z ¢ &, implying ¢ = ¢*, and the first assertion is
proved. )

Now suppose, in addition, that sup {6, |6 € wo} < inf {6; |6 £ w,}. Let r =

sup {6; |6 ¢ wo}. A general result obtained by Truax [7] implies here that C
is essentially complete for the testing problem (wo(r), wi(r)) where

w(r) ={6|60¢cQ, 6, < r}
and
w(r) ={0|60eQ, 6 > r}.

This could also be shown by slightly modifying arguments contained in a paper
by Lehmann and Scheffé [4]. This readily implies that C is essentially complete
for (wo, w1) as follows. For any test ¢, Egp is continuous in 6 for 4 in Q. Suppose
¢* is not in C. Then there is a test ¢ in C' such that Esp — Ego* < 0if 0 £ wo(r),
2 0if 8 ¢ wi(r) and hence by continuity if 6 £ @, 6, = r. Thus, for the problem
(wo, w1), ¢ is at least as good as ¢* and it follows that C is essentially complete.

We now show that C' is complete. Since C is essentially complete, this will

follow from showing that, if ¢ is in C and ¢* is any test satisfying

Eop = Eop*, 0ewUaw,
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then ¢* is in C. Suppose ¢ and ¢* are such tests where p(z) = 1if s(z) > c(i(x)),

= 0 if s(z) < c(i(x)), z € L. Then o*(z) = 1 if s(x) > e(t(x)), = 0 if
s(z) < ce(t(zx)), z e X.

For suppose this is not true. Let y be the least element z of Y not satisfying

o*(x) = 1if s(z) > ¢(z),

zed,,

(3) 7 = 0if s(z) < c(2),
2 le(z) — ¢*(@)h(z) = 0. s(z) = ¢(2)

Then, by a limiting process similar to one used above,
2 le(z) = e*(@)Ih(2)MF =0, i=0,1.

But this, with the assumption that M, < M, , implies by a standard Neyman-
Pearson type calculation that (3) must be true for z = y, a contradiction.
Thus ¢* has the desired form and is therefore in C.

The minimal completeness of C now follows from the completeness of C
and the first assertion of the theorem. '

REMARKS.

(i) Theorem 1 indicates that C, minimal complete for the standard problem
of testing 6; < r against 6, > r, remains minimal complete if the testing prob-
lem is changed provided that certain conditions are satisfied. A simple kind of
permissible change is the introduction of an indifference zone. For example,
C is minimal complete for testing 6, < r, against 6 = r, where r; < r2.

(ii) It is clear from the theorem and proof that C, is minimal essentially
complete.

(iii) The inequality M, < M, was not needed in the proof of the first asser-
tion.

(iv) A result obtained by Lehmann [3] is related te this theorem. Lehmann
considers only the testing problem 6, =< r against 6; > r, but in the setting of
the general exponential family. He shows that Cy is minimal essentially com-
plete for testing 6, < r against 6, > r.

THEOREM 2. Let (wo, w1) be a testing problem relative to the above described
probability structure (X, @, P, Q) such that w, = w: U w3 and for 1 = 0, 2, 3, the
set { (", €”) | 6 € wi has a limit point (M,-, 0), where

inf {6, ] 609} <log M, <log My < log M; < sup {6, | 6 ¢ Q}.
Then no test in D s better than some other test in D. If, in addition,

sup {61 | 0 & we} < inf {6 | 0 & wo}

and sup {60 & w)} = inf {6; | 0 ¢ ws} then D is minimal complete.

The proof exactly parallels the proof of Theorem 1 and is therefore omitted.
Theorem 2 implies that D is minimal complete for the standard problem of
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testing 6, = r against 6; # r and is also minimal complete for such problems
as testing 7, < 6; < r; against 6, < r;, or = 7, where

7‘1<7'2S7'3<T4.

ExampLEs. Theorems 1 and 2 have straightforward applications to testing
problems with respect to certain multinomial distributions, distributions aris-
ing in contingency table analysis, and also to two-sample binomial, Poisson,
negative binomial distributions, and so forth. We examine a little more closely a
typical example, the two-sample binomial case. Let X = (X;, X,) where
X, and X, are independent random variables and X, is binomial (n:, p.),
¢t =1, 2. Here we may let

S(Z) = 1, t(’l)) = + Zs r = (xl ) x2)7

Y4t Pe-
0, = lo; .
' € (1 —mn/ 1—= m)

Theorem 1 implies that C is minimal complete for any of the following testing

problems: pi/(1 — p1) = mps/(1 — p2) against pi/(1 — p1) = 7302/ (1 — p2);
p1 = rspe against py = 74ps ; p1 = r3pe against py = r4pe ; and so forth. Here
1 <rp,rs <714, 73 =1 =7, It is not hard to see that C is not necessarily
minimal complete for such problems as testing p; — p. < r; against p; — p2 =
r, where r; < 0 < r;. Here the indifference zone is too large in the sense that
the first assumption of Theorem 1 is not satisfied. For this problem C contains
too many tests, some tests in C being inadmissible. Theorem 2 implies that D
is minimal complete for a variety of two-sided testing problems involving the

ratio (p1/(1 — p1))/(p2/(1 — p;)) or the ratio pi/p..

Thus, Theorems 1 and 2 imply that the tests described and investigated by
Fisher [1], Tocher [6], Sverdrup [5], and Lehmann [3], among others, in connec-
tion with the two sample binomial and related problems are admissible (since
they are in C or in D) not only for standard testing problems but also for useful
modifications of these problems.

and

3. Counterexample for the continuous exponential case. In the previous
section it was seen that, with respect to the discrete exponential family of dis-
tributions, the minimal complete class of tests for a standard problem often
proved to be minimal complete for a wide variety of related problems. We now
show by an example that the situation is much different for the continuous ex-
ponential family of distributions. This example, though dealing only with a
special subfamily of the continuous exponential family, does not seem to be
atypical and does seem to reveal the essential features of the general case.

Let X = (X, X,;) where X; and X, are independent random variables and
X has the waiting time density with parameter \;, 7 = 1, 2. That is, for 2 =
(%1, 22) in the first quadrant, the value of the joint density is

)\1)\2811()\2—X1)+(a:x+=vz)(—)\z)'
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Thus, for the standard problem of testing A2 — Ay < 7 against X\, — \; > 7,
the minimal complete class of tests is C where ¢* is in C if and only if there is a
test ¢ and a function ¢ such that p(z) =1 if 23 > ¢(z; + 22), = 0if 2, <
c(zy + 22), and ¢(x) = ¢*(z) a.e. (Lebesgue) for z in the first quadrant.
(See Lehmann [3].)

The class C is too large to be minimal complete for the related problem of
testing A2 — A\ = —1 against A, — \; = 1 as we now show. Let ¢* be any test
such that ¢*(z) = 1 if 2, > ¢*(21 + 22), = 0 if 23 < ¢*(o1 + x2), where for
each nonnegative integer =,

c*(y) =0 if 172" <y —2 < 1/2°,
=log4 if 1/2°"" <y —2 < 1/2"",

Then ¢* is in C and ¢* is inadmissible. For let ¢ be the test satisfying ¢(z) = 1
if 21 > e(@m + 12), = 0if ;1 < e(m + x2), where ¢(y) = log2if 2 <y <3,
= ¢*(y) otherwise. Then ¢ is better than ¢* as can be seen as follows. Straight-
forward calculation gives

3
Ero — Ero* = ()\1)\2)/()\2 — )\1) f e—)‘zu[e(h—h)c‘(w _ e()\z—h)c(y)] dy,
2
where X = (A1, N\e). Thus, if for n > Oand r = —1, 1,
3
(4) . f e—-w[erc’(u) _ erc(y)] dy >0,
2

then Exp — Exp* < 0 if Ap — Ny = —1, >0 if A\ — N\, = 1, implying that ¢
is better than ¢* Consider the inequality (4) for r = 1, the other case being
proved similarly. For n > 0,

3
— .
f e m/[ec W _ ec(u)] dy
? © 2=2n 2—(2n+1)

—em Y [f2 (1 — 2) dy + F(4 — 2) dy] > 0,

n=0 =(2n+1) 2—(2n+2)
since the nth term in the series is greater than
—27 exp (—n/2"T)

+27¢@" exp  (—n/2"*) = 0.
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