LOCALLY MOST POWERFUL RANK TESTS FOR TWO-SAMPLE
PROBLEMS!

By HiroruMmi Uzawa

Stanford University

1. Summary and Introduction. In order to solve nonparametric statistical
problems, it is often found useful to apply those criteria of optimality which are
employed in parametric problems. In the present paper, we are concerned with
nonparametric two-sample problems of testing the null hypothesis that two
populations have the same distribution against certain nonparametric alterna-
tive hypotheses, and generalize the parametric optimality conditions of locally
most powerfulness. A rank test for a two-sample problem in this paper is called
locally most powerful if it is locally most powerful against a one-parameter
family of alternatives. A criterion is constructed by which it is possible to solve
the problem whether or not a given rank test is locally most powerful for a two-
sample problem in which the set of all possible pairs of cumulative distribution
functions is convex and closed (in the weak* topology).

Let X, - - - , X,, be sample elements from the first population, X,, 41, - - - , X,
(n = ny + me) from the second population, and the statistic’ Z; = 0 or 1, accord-
ing to whether the jth smallest observation is from the first population or the
second,j =1, -, n.

It will be shown that any locally most powerful rank test has the following
form:

Reject the null hypothesis if Z aiZ; > ¢
J

*
) Accept the null hypothesis if Z a;iZ; <c¢
7

where a; , - - - , @, are constant numbers. For the two-sided two-sample problem,
any rank test of the form (*) is locally most powerful. For the one-sided two-
sample problem, a non-trivial rank test of the form (*) is locally most powerful
if, and only if,

_ n—2\]"Q(s+1 -
cJ_I:l/< .7 )]g;(j‘l'l)(a‘-n_d)’ .7_0}1’ ’n—27

where

I =

(al+ ce +an)7

a=
n
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1 The present work was begun at the Summer Statistical Institute on Nonparametric
Methods held at the University of Minnesota in June-August, 1958, under the sponsorship
of the National Science Foundation and was completed with the support of an Office of
Naval Research contract at Stanford University.

2 The whole argument of the-present paper is very much simplified by the use of the Z-
statistics which are defined by I. R. Savage [6].
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686 HIROFUMI UZAWA

have all non-negative Hankel determinants (the precise definition of the Hankel
determinants is given in Section 8 below).

For the symmetric two-sided two-sample problem, a non-trivial rank test of
the form (*) is locally most powerful if, and only if,

Z><8—‘1)(am+1_s—as)=0, forj=1,---,n.
8=j+1 J

Finally, it will be shown that for the two-sample problem, in which the alterna-
tive hypothesis is that the expectation of the first cumulative distribution func-
tion with respect to the second distribution is not less than 1, a non-trivial rank
test of the form (*) is locally most powerful if, and only if,

[(n+1)/2]
n+1
5 (o

2. Two-Sample Problems. Suppose that there are two statistical populations
with cumulative distribution functions F(z) and G(z), —o < z < +x. A
two-sample problem is concerned with testing a null hypothesis H, against a
certain alternative hypothesis H; based upon the observation of finite random
samples Xy, -+, Xn, and X, 11, -+, X, taken from populations F and G,
respectively. We will confine ourselves here to the cases in which the sizes n; and
ne = n — m of random samples are fixed.

In the present paper, our main interest will be in the following two-sample
problems:

ProBrLEM (I): Two-sided two-sample problem. Test the null hypothesis H,
that two populations F and G have the same distribution: F = @, against the
alternatives H; that two populations have different distributions: F = G.

ProBrEM (II): One-sided two-sample problem. Test the same null hypothesis
H, against the alternatives H, that the first population F is statistically smaller
than the second population G:

s) (@ns — as) = 0.

8=1

F > G.

ProsrLEM (III): Symmetric two-sided two-sample problem. Test the null
hypothesis H, that F' and G are symmetric and identical against the alternatives
Hj; that the two populations are both symmetric with the same median but are
different.

ProsrLEM (IV): Test the null hypothesis H, against the alternatives H, that
two populations have different distributions and the mean of the first F with
respect to G is not greater than %:

1

F=G and deng

For the sake of simplicity, we use the following notation: For two functions
F and G,

F=@G if F(z) = G(z) forall z,
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Fz=@G if F(z) =2 G(z) forall uz,
F>G if FzG but F #G.

It will always be assumed that F(x) is strictly increasing and continuous on — o <
z < 4. '

3. Rank Tests. Let X, -+ , X,, ,and X, 41, -+ , X, be two random samples
taken from populations F and G, respectively. We will confine our attention to
rank tests which may be defined conveniently in terms of the following Z statistics

0, if the 7th smallest observation among
Z; = X1, + -+, Xa comes from population F
1, otherwise,
j =1,:-,n;
then any non-randomized rank test ¢ may be expressed by

0, it T(Z, %) <c
ly»if T(Zly""Zn)>C’

where T(z, + -+, 2,) is a function defined on z = (2, -+, 2,) with z; = 0 or
1,7=1, ---,n,andcisa constant. $(X;, - - - , X,) is the probability of reject-
ing the null hypothesis Hy under observation X, ---, X, . We denote by ¢r
the test ¢ defined by (1).

If T(z) is a constant function of z, the test ¢r is trivial. Two rank statistics
T(z) and T'(2) define the same rank test if

(2) T'(z) = A\T(2) + B forall =z

with positive A and arbitrary 8.

In what follows, we are interested only in non-trivial rank tests, and two
statistics 7" and T satisfying (2) may be considered as identical.

The size oy, of test ¢r is given by

(1) ¢’(Xl;"'7Xn) ={

(3 Uy = z':(ﬁr(z)P(z | F, F)
and the power function 87(F, G) may be expressed as
(4) Bz(F, @) = Y;‘.w(z)P(z | F, @),

where P(z | F, @) represents the probability of Z = z when F and G are true dis-
tributions, and the summation »_,is overall z = (21, -+ , 2,) with 2z; = 0 or
1 such that D 7y 2; = ng. P(2| F, G) may be expressed as follows:

5) PGIEG) = mimt [ [ TP G

—0LU IS+ SUplF0
Since F is assumed to be continuous, (5) may be written:

©  PGIF@ =PaH) =mint [ [ T HG)")

J=1
0515+ Stasl
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where
(7) H(t) =GF'(#)], 0=t=1.

H(t) is a cumulative distribution function on [0, 1]. We shall denote by @ the
set of all possible H’s associated with any given two-sample problem, i.e.,

(8) Q=1{H;H =GF,(F,Q) ¢ Hy or Hy}.

The sets @ corresponding to the two-sample problems mentioned in Section 2
are as follows:

ProBrLEM (I): @, is the set of all cumulative distribution functions H over
[0, 1].

ProBLEM (II): Q is the set of all cumulative distribution functions H over
[0, 1] such that H(t) < tforall0 <t < 1.

ProBLEM (IIT):Q; is the set of all symmetric cumulative distribution functions
H over [0, 1]:

Hit) + H1 —t) =1, forall0 < ¢ < 1.

ProBLEM (IV): Q,is the set of all cumulative distributions H over [0, 1] with
mean not smaller than 3:

fth(t) = 1.

The set @ in any problem of the above type has the following properties: First,
Q is a convex set;ie., H;, Hy e Q,and 0 S X\ = 1imply AH; + (1 — M) H; ¢ Q.
Secondly, for a sequence H;, Hy, - -+ of distributions in @, the condition that

[ 5w anw =tim [ 50 am o
0 >0 V0

for any continuous function f(¢) on [0, 1], implies that the distribution H also
belongs to the set Q. This last property is sometimes stated that the set Q is
closed in the weak* topology.®

4. Locally Most Powerful Rank Tests. A set of cumulative distribution
functions { (F(zx, 8), G(x, 0)):0 < 0 < 6}, where 8 > 0, is called a one-parameter
Sfamily of alternatives if the following conditions are satisfied:

(a) (F(x,0),G(x,0)) e Hy,for0 < 8 <8,

(b) F(z,0) = G(z,0),
and

(¢) H(t, ) = GIF (¢, 6), 0] is uniformly differentiable with respect to 6 at
6 = 0. Here H(t, 9) is called uniformly differentiable at § = 0 if the con-
vergence, as 0 tends to 0, of [H(¢, ) — H(t, 0)]/6 to [0H (t, 8)/36]s— is uniform
with respect to ¢.

A rank test ¢r is said to be locally most powerful if there exists a one-parameter
family of alternatives (F(z, 0), G(z, 6)) such that ¢r is most powerful against

3 Cf., e.g., Bourbaki [1].
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the alternatives (F(z, 8), G(x, 8)),0 < 8 < 6, , for some positive number 6, , i.e.,
(9) B¢T(F(x2 0)1 G(x) 0)) g B¢(F($, 0)7 G(x) 0))7 0<o< 00 )

for any rank test ¢ with size a.

The calculation of locally most powerful rank tests will be done by the following
theorem:

TaEOREM 1: The locally most powerful rank test ¢r against a one-parameter
famaly (F(z, 0), G(z, 8)) is determined uniquely for each size of test defined by

(10) T(z) = f:l a;jZj,
where
(11) %= <.7 - 1) f tj_l(l t)n_l dQ(t) j = 1’ T n,
| eH(t,06)
(12) o = |20
(13) H(t, 0) = GIF (4, 0), 6].
Proor: Let us define P(z, 0) by
(14) P(27 0) =P(le('7 0))G(')0))

Then, by the Neyman-Pearson Lemma, any rank test ¢ is locally most powerful
against (F(-, 6), G(-, 0)) if, and only if, ¢ is defined by the statistic

(15) T(z) = [aP f;; 0)]0_0.

On the other hand, differentiating (6) with respect to 6, and noting that
H(t, 6) is uniformly differentiable at 8 = 0, we have

(16) [8PSI;, 0):IH = n!lng! f e f Zl zidly -+ Aty dQ;(8) dbjyr -+ din
0St1Se  Stnsl

where Q(t) is defined by (12). Since

f fdtl... dt-"_l':(——-l—l)-‘t”l

0st15-- St 1585

f"’fdtj+1"‘dn"( )'(l_t)n—:

tiStj41S5 - Stasl
the integral in (16) may be further simplified and we have

252].

—mlm! jz:;z,-u/u ~ Din = D1 [ 71— 0™ de.

and

(17)
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The relation (17), together with (15), proves the theorem. Q.E.D.

Theorem 1 easily implies the following

CoroLLARY: Any locally most powerful rank test is admissible.

In what follows, we shall first investigate locally most powerful rank tests for
a general two-sample problem in which the set 2is convex and closed in the weak™
topology, and obtain a criterion for a rank test to be locally most powerful. We
then consider the class of all locally most powerful rank tests for various two-
sample problems mentioned above.

5. The Set A: A Special Class of Locally Most Powerful Rank Tests. Let us
now consider a general two-sample problem for which the set @ of all correspond-
ing H functions is convex and closed in the weak* topology. In this section we
shall introduce the class of rank tests which are locally most powerful with
respect to a special class of one-parameter families of alternatives.

Let H be an arbitrary distribution function in 2, and consider a one-parameter
family (F(z, 6), G(z, 8)),0 < 6 < 1, satisfying the condition that*

(18) H(t, 6) = (1 — 0)¢ + 6H(),
0

IIA

t

I\

1, 0

IIA
54
IIA
[y

where »
H(t, 0) = GIF'(t, 6), 6].

By Theorem 1, a rank test ¢r is locally most powerful against the one-parameter
family satisfying (18) if, and only if,
(19) T(z) = AJZI: a;j(H)z; + 8,
where ) is a positive number, 8 an arbitrary number, and
l .
(20) a;(H) = (’J‘ }) [ a-vp=anw, =1, ,n
- 0
We shall define the set A of n-dimensional vectors by
(21) 4= {a = (aly et ,aﬂ); a; = Aa'.?(l:‘[) +ﬁ:.7= 1’ e ,n,HeQ,A = 07
and @ is an arbitrary number}.

The set A, in other words, consists of all vectors that describe rank tests
locally most powerful with respect to one-parameter families satisfying (18).
It may be noted in particular that

(22) ai(HO) = -y .7= O; 17 e, — 17

Sl

where
Hy(t) =t, 0=t = 1.

4 The case in which H(¢) is a polynomial was considered by Lehmann [5].
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It will first be seen that the set A is a closed convex set. For any H; , H; ¢ Q,
and0 = A = 1, wehavea[(1 — N\)H; + AHs] = (1 — N)a(H:) + Na(H;), which,
together with the definition (21) of A, implies that the set A is a convex cone.

In order to prove the closedness of the set A, let { (a1, - -+ , an)} be a sequence
of n-vectors in A which converges to an n-vector a® = (ay, - , a%). Since o’
isin A, there exist H” ¢ 2, \” = 0, and 8" such that
(23) aJ!:A'aJ'(HV)"_vaj:17"',n, ”=1727"'-

Taking a suitable subsequence of {H'}, if necessary, we may without loss of
generality suppose® that for any continuous function f(¢) on [0, 1],

1 1
(24) tim [ £ am@) = [ 1) aH (),
with some distribution function H(¢) over [0, 1]. Since @ is closed in the weak*
topology, the function H belongs to the set Q.

If the sequences {\’} and {8’} are bounded, then, for any limiting points A® and
&', we have, by (23) and (24), af = Na;(H) + 8%j = 1, -+, n, which shows
that vector a belongs to the set A. If both sequences {\"} and {8’} are unbounded,
then we have H(t) = t, for all t. Hence, vector a trivially belongs to the set 4.

6. The Set B. In order to investigate further the structure of the set 4, we

now introduce linear transformation L which maps n-vector @ = (a1, -+, @s)
to b-vector b = (bo, by, + -+, bp) defined by

L(a) = (Lo(a), Li(a), -+, Laa(a)),
where

T X V] /=) A

The inverse linear transformation L™ of L is defined by
L7(b) = (Li'(b), -+, L' (b)),
where

n—1 . -
(26) e = 3 (—1)*-f+1<sfji l)b,, ieLoom

8=0j—1

The fact that the linear transformation L™ defined by (26) is the inverse of L
defined by (25) is easily seen from the following identities:

(27) t"=2("‘1."1>t"‘(1—t)”", i=0,1---,n—1,
Sa\s —j—1
and
n—1 .
1 _ n—j _ 1)1 n—17 8 - e
(28) (1 —¢) ,;_l( 1) (s—j—l—l)t’ ji=1-,n

5§ Cf., e.g., Bourbaki [2].
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Let us now define the set B as the image of the set A by the linear transforma-
tion L:

(29) B=1{b= (by, "+ ,bn1):b=L(a) forsome acA}.

Since the set A4 is a closed convex cone and L is linear, the set B again is a closed
convex cone in the n-vector space E™. It is noted that we have, by the identities
(27) and (28),

(30) Lia) = [ PaH®,  §=01,,n 1,

for any H ¢ Q. We have, in particular, that
(31) LJ(17)1)="'/(.7+1), j=0,1""1n_1°

The definitions (21) and (29) of the sets A and B, together with (30) and (31),
imply that an n-vector b = (bo, -, ba_1) belongs to the set B if, and only if,
there exist H € Q, A = 0 and real number 8 such that

1
(32) bj=xfotde<t)+a/<j+1), i=01,,n—1

We shall give a necessary and sufficient condition for an n-vector b =
(bo, -+, bu) to be in the set B.

We first define the polar cone B* of any set B of n-vectors b = (bo, - -+ , bn)
as the set of all n-vectors y = (%o, -** , Y¥n—1) Whose inner product with any
vector in B is non-negative:

(33) B*={y= (%, ,Yna):y-b=0 forall beBj,
where y-b denotes the inner product of two vectors y and b:
n—1

yb =2 yb;.
J=0

For any n-vector y = (Yo, *** , Yn—1), let us define the polynomial y(¢) by
n—1

(34) y(t) = fz_‘ayjt’.

By the definition (33), and the relation (32), ann vector y = (%o, *** , Y1)
belongs to the set B* if, and only if,

n—1

(35) v [x [ YaH@) + 8/G + 1)] >0

for all H e Q,\ = 0, and S real.
The relation (35), in view of (34), is equivalent to the following:

1 1
f y(t) dH(t) 20, forall H ¢@,and fo y(t) dt = 0.
0 i
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Therefore, we have

LemMma 1. An n-vector y = (Yo, -+ , Yn—) belongs to the set B* if, and only if,
1
(36) f y(t) dH(t) = 0, forall HeQ,
0
and
1
(37) [vwa=o.
0

On the other hand, since the set B is a closed convex cone in the n-vector space
E", we have, by the duality theorem® on closed convex cones, that

(38) B* = B.

The relation (38) may be expressed as
LemmMa 2. An n-vector b = (bo, *+ - , bu—y) belongs to the set B if, and only if,
by =0, for all y & B*.

7. The Two-Sided Two-Sample Problem. We shall first consider Problem (I):
Test the null hypothesis H, : F = G against the alternatives that H; : F = G.
In this case, the set @ consists of all cumulative distribution functions H over
[o, 11.

The class of all locally most powerful rank tests is characterized by the follow-
ing theorem:

THEOREM 2: A non-trivial rank test ¢r s locally most powerful for Problem (I)
if, and only if,

(40) H@=;wm
where ay - -+ , G, are arbitrary constants.

Proor: It will be shown first that the set B* consists of the zero vector 0 =
(0, ---, 0) alone. Indeed, let an n-vector y = (%o, **, Yna) belong to B¥.

By Lemma, 1, the conditions (36) and (37) must be satisfied, where Q, is the set
of all cumulative distribution functions H on [0, 1]. Then the condition (36)
implies that

(41) y(t) = 0 forall 0<t<1.

But since y(t) is a polynomial, the relation (36), together with (37), implies that
y(t) = 0,forall0 = ¢ < 1. Hence,y; =0,7=0,1,---,n — L.

The polar cone B** of B* = (0) is now the set E" of all n-vectors. By Lemma
2, therefore, we have B = E”. Hence, the set A also is equal to the set E” of all
n-vectors, and any test ¢r defined in terms of T'(z) of the form (41) is locally
most powerful.

6 Cf., e.g., Bourbaki {1] or Fenchel (3].
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8. The One-Sided Two Sample Problem. In this section we will be concerned
with Problem (II): Test the hypothesis Hy : F = @ against the alternatives that
H,; : F > @. The space Q. for this problem consists of all cumulative distribution
functions H on [0, 1] such that

(42) Ht) <t 0=<tsl.

Before stating the characterization of the class of all locally most powerful
rank tests for Problem (II), we introduce some concepts from the Hausdorff
theory of moments.’

An m-vector ¢ = (¢, ¢, **+ , Cm) mMay be called here a solution to the m-di-
mensional moment problem over [0, 1] if there exist a distribution function H
over [0, 1] and a non-negative number A such that

1
(43) Cj=)\ftjdH(t), j=0,1,---,m—1.
0

Let C,. be the set of all solutions to the m-dimensional moment problem over
[0, 1]:

Cn = {c = (co 01, " yCm1)iC; = XftjdH(t),

(44) . e
j=0,1,--- ,m — 1,for some distribution H over [0, 1]

and non-negative number A | °

Similar to the set B, the set C,, hereisalso a closed convex cone in the m-vector

space.
The polar cone C, may be written as

1
= { 2= (20, ,2m1): f 2(t) dH(t) = 0 for all distributions H }
0

(45)
={z=1(20," " y2m1):2(t) 20,forall 0 S ¢t = 1},

where z(t) is defined by 2(t) = .7 2. Hence, by the duality theorem on
closed convex cones, we have that

LemMA 3. For an m-vector ¢ = (Co, *** 5 Cm-1), € € Cutf, and only if, ¢c-z = 0,
forallz = (20, -+, 2m) Such that 2(¢) 2 0,0 =t = 1.

By a theorem from the Hausdorff theory of moment problems,® we have, on
the other hand, that an m-vector ¢ = (¢, «*+ , €m—1) is a solution to the m-di-
mensional moment problem over [0, 1] if, and only if, the Hankel determinants
As(co, -+, ¢:) and As(co, -+, ¢,) are all non-negative, for all s = 0, 1, --- |
m — 1.

7 For the Hausdorff theory of moments, the reader is referred to, e.g., Shohat and Ta-

markin [7] or Karlin and Shapley [4].
8 Cf. Karlin and Shapley [4], pp. 54-57.



LOCALLY MOST POWERFUL RANK TESTS 695

The Hankel determinants As(co, +-- , ¢) and A,(co, *-- , ¢;) are defined by

CD cl oo e cr
AZT(CO y ", C2r) = E
Cr Cry1 *°° C2r
Ci C **° Crya
Borga(Co, o+, 0op1) = |}
Cry1 Cry2 °*° Cory1
€Ci —C € — C3 *°° Cr — Cry1
AZT(CO y "y C2T) = :
Cr = Cr41 Cry1 — Cpy2 *°° Cor—1 — Cor
C—C € —C **°C — Crp1

Z—\zr+1(co y Tty 02r+1) =

Cr — Cr41Cry1 — Cry2 °** Cop — Coryl

The class of all locally most powerful rank tests for Problem (II) may now be
characterized by the following:

THEOREM 3. A non-trivial rank test ¢r 18 locally most powerful for Problem (II)
if, and only if, T(z1, -+, 2:) = D.r1a2;, and (Co, €1, , Coz) has all
non-negative Hankel determinants, where

o[t/ CTNE Ym0 sm0nn

(46)

Proor: In the present case, the set Q; consists of all cumulative distribution
functions H(t) over [0, 1] such that

(47) H(t) <t forall 0<t<1.

By Lemma 1, an 7i-vector y = (%o, -+ , Yn—) belongs to the polar cone B* if,
and only if,

1
(48) f y(t) dH(t) = 0, for all H such that H() < 4,0 £ ¢ £ 1,
1]
and
1
(49) f y(t) dt = 0.
0

We shall show that in view of (49) condition (48) may be replaced by
(50) y'() =20 forall 0=t =1.

In fact, for any polynomial y(t) satisfying (49), we have, by a partial integra-
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tion, that

[ v anw = yorwi - [ yoro
(51) ' 1
= [voe-n1e) a

Now suppose that there exists ¢, such that 3’ () < 0,0 < #, < 1. Then, by the
continuity of y'(t), there is an interval I in [0, 1] containing ¢, such that 3’(¢) < 0,
for all ¢ ¢ I. It is then possible to construct a cumulative distribution function H,
over [0, 1] such that

t — Hy(t) =0, forallt 21,
t — Hy(t) > 0, for ¢ interior to 1.

Then H; belongs to the set 2, and by (50) and (51),
1
[ vwam® = [y@amo <o,

which contradicts (48) and (51). Therefore, we have 3’(¢) = 0,forall0 <t < 1°
The polar cone B*, therefore, may be characterized by
B* ={y = (Yo, ,yn1):y(t) 2 0,forall0 <t =1,
(52) 1
and [ (1) di = o}.
0

We may rewrite (52) as follows: y ¢ B* if, and only if,

(53) yi="7:!;zj—1’ j=17°“7n_27
and
n—1 1
54 = — —,
(54) Yo ;J_i_lyy

for some 2 = (2, **+ , 2n2) € Cu_y .
By Lemma 2, (53) and (54) imply that b = (bo, by, -+, bn) € B if, and
only if,

n—1
(55) > ‘71 (bj — ‘7—+~1——1 bo) 2120 forall z= (20, "+ ,200) eCh_s.

=1

By Lemma 3, the relation (55) is satisfied if, and only if,

1 1 .
(56) cj_j'i'_l(bﬂ-l—mbo)’ .7—0717“'77"_27

have all non-negative Hankel determinants. Substituting (25) into (56), c; are
expressed by (46).
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We now show that any locally most powerful rank test ¢ may be expressed
in terms of T(2) = D riaz; witha = (ai, ---, an) € A. In fact, let ¢, be
locally most powerful against a one-parameter family (F(z, 8), G(z, 6)). By
Theorem 1, we have T(2) = ).} a,2; , where a; are defined by (11). Since

H(0,0) =0, H(1,06) =1,

H(tyo) .ét:H(t’O); 0=st=1,
we have
(57) Q(0) = Q(1) =0,
(58) Q) =0, 0=t=1,

where Q(t) is defined by (12).

Let us first consider the case where Q(t) is continuously differentiable on [0, 1].
Then, by (57) and (58), there exists a positive number A such that H,(¢) =
t + AQ(?) is a cumulative distribution function over [0, 1], for which we have

(59) Hy(t) ¢, 0=st=1

Consider a one-parameter family (Fi(z, 8), G(zx, 0)) satisfying
(60) Hy(t,0) = (1 — 0)t + 0H.(t).

H,(t, 6) belongs to the set Qs for 0 < 6 < 1, and

(61) [2hLD] e,

Therefore, Y ;aj; is locally most powerful against the one-parameter family
(Fi(z, 8), Gi(z, 0)) satisfying (60), and ¢ = (a1, - , a,) belongs to the set 4
for Problem (II).

Now consider the general case where Q(¢) is not necessarily differentiable.

Let {H,(t,0);» = 1,2, --- } be a sequence of cumulative distribution functions
in @ such that
where
oH,(t,0
(63) Q) = [ ( )]
0=0

is continuously differentiable with respect to ¢. The locally most powerful rank
order test against one-parameter family (1 — 6)¢ + 0H,(¢) is defined by

(64) () = 3 ok

J=1
where

(65) o = (’;: i)] 71— )" dQu(2).
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Then the relations (62) and (65) imply that
(66) lima;=ai’ j=17""b°

The vector a” = (a1, * - ,an) belongs to A which is a closed set. Hence, by (66),
we havea = (a1, -+, a,) € A.

9. The Symmetric Two-Sided Two-Sample Problem. In this section we in-
vestigate the structure of the class of all locally most powerful rank tests for
Problem (III). Problem (III) is to test the null hypothesis Hy : F = @G, sym-
metric against the alternatives that Hs : F > @, symmetric with the same median.
For Problem (III), the set Q; consists of all cumulative distributions H over
[0, 1] such that

(67) Hi) +H(1 —t) =1, forall 0 =t= 1.
The class of all locally most powerful rank tests is characterized by the follow-
ing
TuEOREM 4. A non-trivial rank test ¢r is locally most powerful for Problem (I1I)
if, and only if, T(21, -+ , 2a) = Dy aj2; With
(68) Z <s R 1) (am+l-t -a) = 0, Jorall j=1, -+ ,n
=j+1 J

Proor: Since the set Q; consists of all cumulative distribution functions H
satisfying (67), Lemma 1 implies that an n-vector y = (%o, : * - , ¥n—1) belongs
to the polar cone B* for Problem (III) if, and only if,

! for all cumulative distribution functions H (¢)
(69) -/; y(t) dH(?) 2 0, satisfying (67),
and
1
(70) [vwa=o.
0

If H satisfies (67), we have
1 1/2
[ vwar® = [ 1w +ya - 0140,
0 0

Relations (69) and (70) may now be replaced by

172 for any cumulative distribution
(71) o y(®) +y(1 = )] dH(:) 2 0, functions H over [0, 1],
and
1/2
(72) [ w®+ya-na=o

But relations (71) and (72) are satisfied if, and only if, y(¢) + y(1 — t) = 0,
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0 =t < 3. Hence, ann-vector y = (yo, - * - , yn1) belongs to the polar cone B*
if, and only if, .
(73) y@) +y(1 —t) =0 forall 0 =t=<1.

The relation (73) may be written

n—1

(74) 3/:+Z’( 1)().%—0 j=011""’n_1’

By Lemma, 2, the set B is equal to the polar cone B** of B*; Therefore, by (74),
an n-vector b = (by, -+ -, bya) i in B if, and only if,
(75) b—u,+Z( 1)‘()u., i=0,1,---,n—1,
for some u = (wg, - ** , Un-1).

It may be noted that, for an n-vector b = (by, - -, bs1), there exists an
n-vector u = (w, + -, Un—) for which the relations (75) are satisfied if, and
only if,

(76) z(:)( l)l(> ’ j=0y1;""n_1'

1t is evident that the relation (75) implies (76). On the other hand, let the
relation (76) be satisfied. In order to prove the existence of up, * - « , Uy satisfy-
ing (75), we use the mathematical induction on n. Let us assume that we have
found g, - -+ , Un— which satisfy the relations (75) forj = 0,1, -+, n — 2.
If n — 11is an even number, u,_; may be determined by

n—2 —
2un—1 = bn—l - Z (_1)‘ (n s 1) Usg «

8:=(
Ugy *** 5 Un—z a0d U,— then satisfy (75) fors =0, - ,n — 1.
If » — 1is an odd number, the relation (75) may be satisfied with w,, -,
U.—g , and arbitrary u,—; . In fact, by (76),

b = 3 (= 1)( ) b= b+ 3 (= 1)‘( 'l)b..

8=0 8m=(

Hence,
s =5 0 (" T ) [+ 5 -0 ()]
(77) n—2 n—2 n—2
“S e (T urE R o (* T (0w
But

Eer (390
=<”_1>ng2( 1)"( T 1)=—(—-1)”""<”:1>.



700 HIROFUMI UZAWA

Since n — 1 is odd, we may now write (77) as follows:

n—2 —
(78) 21 = 23 (=17 (" - 1) Y.
Dividing (78) by 2 implies the relation (75) for j = n — 1. Expressing (76) in
terms of a;, -+ - , a,, we get the relation (68).

We now have to show that the set A actually exhausts the class of all locally
most powerful rank tests for Problem (III). Let T'(z) = 2 ;. a;z; define the
rank test which is locally most powerful against one-parameter family (F(z, 6),
G(z, 9)) such that

(79) H(i, 0) + H(1 — ¢, 68) = 1, 0<:=< 1.

Since the set A is a closed set, it again suffices to consider the case in which
Q(t) = [0H(t, 8)/00]s— is continuously differentiable.
By (79) we have

(80) Q(0) =Q(1) =0, Q) +Q(1 —1)=0, 0=t=1
Since Q(¢) is continuously differentiable, there exists a positive number A such
that Hy(t) = t + MQ(?) is a symmetric cumulative distribution function over

[0, 1]. Hence, for some constant 8, we have a; = Aa;(H;) + B, which shows that
a = (a, - -, a,) belongs to the set A for Problem (III).

10. The case [; F dG = 1. We shall finally consider Problem (IV): Test the
null hypothesis Hy : F = G against the alternatives that H, : F > G, [( F dG = }.
The set Q4 for Problem (IV) is the set of all cumulative distributions H over
[0, 1] such that

(81) folth(t) >1.

THEOREM 5. A non-trivial rank test ¢r is locally most powerful for Problem (IV)
if, and only if, T(2) = D j-1a,2; with
[(n+1)/2]

(82) 2, ((n+1)/2 = 8)(Gnpe — @) 20,

8=

where [(n + 1)/2] denote the greatest integer less than or equal to (n + 1)/2.
Proor: The polar cone B* in the present case consists of all n-vectors y =
(40, -+ » Ya—) such that

1 1
(83) fy(t) dH(t) 2 0, for all H for which fth(t) >1,
0 0
and
1
(84) [ vwa=o.
0

The set Q4 in particular contains the set of all cumulative distribution functions
H such that H(t) £ t,for 0 < ¢t < 1. Therefore, by an argument similar to the
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one in Problem (II), we have
(85) y(t) =0, 0<t=1, for all y & B*,

Similarly, since the set Q; contains all cumulative distribution functions H over
[0, 1] such that H(t) + H(1 — t) = 1,0 <t = 1, we have that

(86) y() +y(1 —t) =0, 0<t=1, _orall ye B*,
We shall show furthermore that, for any y £ B¥,
(87) y(t) 1islinear in ¢, 0=t=1.

In fact, let o and 7 be arbitrary numbers between 0 and %, and let H, . be the
cumulative distribution function corresponding to the following probability

distribution:
Prob.{t =% — b} = 7/(¢c + 1),
Prob. {t =%+ 7} = /(0 + 7).

The cumulative distribution function H, . belongs to the set Q4 for Problem
(IV), and

1 .
= _T 1 7 (2
[y a0 = 2yt -0+ vt +0.
Therefore, if y = (Yo, * -+, Yaa) € B¥, the relation (83) implies that
(88) —y(3 —o)/o = y(& + 1)/,

forall 0 <o,7 <4

The relation (88), together with (86), implies that y(¢) be linearin¢,0 < ¢ < 1.
Therefore, if y belongs to the polar set B*, we have, by (85), (86), and (87),

(89) Yo=—3pn, nz220 =" =y1=0
On the other hand, let an n-vector ¥y = (%o, * -, Yn) satisfy the relation
(89). Then, for any H ¢ Q,
1 1
‘[; y(t) dH(t) = yo + yxl tdH({) Z yo+ 32y =0,

and
1
jo. y(t)dt = yo+%y1= 0.

The vector y, therefore, belongs to the polar cone B*. Hence, the polar cone B*
consists of all n-vectors y = (%o, * -+, Yn—) satisfying the relation (89). The set
B is, by Lemma 2, equal to the polar cone B** to B*. Thus, we have

(90) b= (bp, -+, bsa) e B if,and onlyif, b = % by.

Writing the relation (90) in terms of a’s, we have that ¢ = (a;, -+, a,) € 4
if, and only if, (82) is satisfied.
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Let ¢r be locally most powerful against a one-parameter family (F(z, 6),
G(z, 0)). By Theorem 1, we have T'(2) = D74 ajz;, where a; are defined by
(11). Since

H(O) =0, H(1)=1, £3ﬂﬂu»;%=£ﬁﬂﬂ@m, 0=t=1,
we have
(91) Q0 = =0, [ tdew zo.

It again suffices to consider the case where Q(¢) is continuously differentiable
at every point {. By (91) there exists a positive number A such that H,(t) =
t + AQ(t) is a cumulative distribution function over [0, 1] and

fwmm=%+xfmmug;

Consider a one-parameter family (Fy(z, 0), G(z, 8)) satisfying H,(t, ) =
(1 — 0)t + 6H,(t). Hi(t, 6) belongs to the set @, for 0 £ 4 < 1, and, for some

number 3,
oHy(t,0)]
(20 —xew) +8.

The vector a = (a1, - -, a,), therefore, belongs to the set A for Problem (IV).
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