SOME ASYMPTOTIC RESULTS FOR A COVERAGE PROBLEM

By Max HALPERIN
Knolls Atomic Power Laboratory

1. Introduction. A quantity whose distribution is of considerable interest in
calculation of microscopic behavior of heterogeneous materials is the intercept
fraction of the phases of the mixture (i.e., the fraction of a linear path intercepted
by a particular phase). For example, in nuclear reactor theory, one will be in-
terested in the fraction of a neutron path through a given phase. In this paper,
we study the statistical behavior of the intercept fraction, for a path of fixed
length, under the following idealization (more precisely defined in Section 2):

1. Linear sections of a phase are selected at random and placed on a very long
line at random, without overlap.

2. The given path length is placed at random on the long line.

Some related experimental work has been done [1], with photomicrographs of
sections on solid Boron Carbide-Zirconium mixtures. In this work a number of

linear paths of fixed length and parallel to one axis of the photograph were taken:

at positions along the other axis of the photograph and the length of Boron
Carbide covered by each path was measured. It is interesting to note that the
frequency of zero fraction intercept predicted by the idealization was in good
agreement with experimental results. The small differences found were in the
direction suggested by the fact that the sampled line had to be of finite thick-
ness. That is, the predicted frequency of zero intercept tended to be slightly
higher than observed.

2. Assumptions and Summary of Results. We assume we have a sample of
line segments A; , A, - -+, A, which are independent random drawings from a
universe of segments with probability density p(A), 0 = A = Ay . Now we
suppose that the segments A;, Ag, -+, A, are placed on the interval (0, L)
in such a way that all admissible configurations of the segments are equally
likely and that L = nA, . We call a configuration admissible if

(a) There is no overlapping among segments.

(b) No segments overlap zero or L.

Now we consider a line of length A << L and place it at random on (0, L)
with the restriction that no overlap with zero or L occurs.

Finally we define the intercept (or coverage) of A, AF, as that part of A covered
by the segments A;, Ay, - -+, A,, and ask for the distribution of AF. In par-
ticular, we consider the limiting distribution of A\F as n — =, for nu/L = V,
0 < V < 1, where u is average segment size.

We find that

LlImPr{AF =0} = (1 = V)exp — oA, where o = V/(1 — V)p.
n->0
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V AM
IL lim Pr (AF = A} = ;fx (z — Np(s) da, i\ < Au,

n->0

=0, ifXgAM.

III. For 0 < AF < A, there are & number of distinct continuous contributions
to the cumulative probability which unfortunately are extremely dependent on
the specific nature of p(A). Because of the large numbers and complexity of these
contributions, we defer a more or less detailed listing of this result and only note
that for the simplest of these contributions, the probability integral is given by

0 min(A\F,sA 3r) - r]
(1-v) ;‘/; [ﬁg—gg—ﬁ exp — a(A — z)ps(z) dz,

where b,(x) is the s-fold convolution of p(bA).

Ay max(\A y)
IV. ENF = AV — Z‘Z{ [ 2p(a) do — [ (z — Np(=) 'dx}.
min(\A i) A

I

V. It was not feasible to obtain a variance for AF for the asymptotic distri-
bution. If, however, one further assumes that A — o, it is found that, for large
A\ Var AF = V(1 — V)? [1 4+ (°/4®)I\, where ¢* is the variance of the dis-
tribution p(A), and is assumed finite.

VI. Asa matter of further interest, the probability distribution of ‘‘admissible
configurations’” mentioned above is apparently a novel generalization of the
joint distribution of n independent uniformly distributed random variables. In
addition to its use in the present problem, one can derive from this distribution,
a solution to a one dimension nearest neighbor problem for non-infinitesimal one
dimensional ‘“‘particles”; this result is at least suggestive of a correction for the
three dimensional problem when the three dimensional particles are not in-
finitesimal. Details are given later in the discussion. The nearest neighbor prob-
lem is of interest in both physics (e.g., Chandresekhar [2]) and biology (e.g.,
Clarke and Evans [3]).

3. Joint Distribution of Admissible Configurations. Consider some one of the
admissible configurations of A;, A;, -+, A,. Denote the segment closest to
zero by &: , next closest by 8. and so on so that 8, 82, - -+ , §, is some permuta-
tion of Ay, Az, - -+, A, , numbered according to segment order on (0, L). Let
z;(j = 1,2, ---, n) denote the position of the midpoint of §; on (0, L). Then
our stipulation of equi-probability of admissible configurations requires that the
joint probability density of @, x2, - -+, %., say h(x), using a vectorial nota-
tion, be given by

(3.1) | h(x) = ([E ,, dx>“1,

where E, is the domain of possible values of x for all possible vectors & (of
which there are n!)
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For given §, it is almost obvious that one must have

n—1
Dbt 26, < x. = L — 36,
1

n—2

21: 6h + %67»-1 é ZTn—1 é Tn — %(6n~—1 + an);

(3.2)

Tip — 3(8; + 8;41),

Nj
=]
<.
IIA
8
<,
IIA

-1
; o +

302 S 2 — 3(6 + &)

One readily finds that, for given §, integration over the region just defined gives
a volume (L — Y7 &)"/n! and, since there are n! possible vectors $, one has

(3.3) p(z) = 1/(L — 20 &)"

for each admissible configuration. We note that this is a straightforward gen-
eralization of the joint distribution of n independent variates each uniform on
(0, L). In addition to being basic to the discussion of this paper, it is of interest
to note that one can, for this case, obtain the exact distribution of the nearest.
neighbor distance defined by
(34) ds = Hlin{l zi — zi| — 3(As + A},
where 2; and z; are not ordered but simply denote the position of the midpoints
of A; and A;. Because this distribution is not directly relevant to the present
problem, we defer a somewhat more detailed discussion to an appendix.

From (3.3) and (3.2) we can deduce various marginal distributions." In par-
ticular, we can show that the distribution density for z;, the jth order statistic,

given that §; is a particular one of the A’s and that &;,--- 8;—, 841 -+, 6a
correspond to a particular set of A’s, is
j—1 j—1 n n—j
(3.5) nl (xj - z: o — %5]') (L - ; o — 30 — xf)
= ;L i
(G = Din —)! (L =T ’
where T, = D7 6, and
j—1 n
h+¥iSa S L— 20— 305,
1 i1
1 We shall use the notation hA(zi; , Ziy , *** , @i, | 5), r £ n, to mean the joint distribu-
tion of the ¢ith, - -+ , ¢,th order statistics given &;, , -*- , 8;, and also the sets of &’s to the

left and right of the corresponding order statistics. For brevity we shall also verbally de-
scribe this distribution as the density of z;; , --- , z;, given &.
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We can also show that the density of z; and ;4,4 ( = 1,2, ---,n — 8+ 1;
= 2,3,---, n) given § is given by

j—1

(3.6) p(x, Tiga | 8) = Bnju(z; — 21381. — 35,7

jts—2 n '
(@it — 2 — ;1 O — 3(8; + 840-1)1" (L — ; O — 30j40m1 — Tigaa) T,
7 o
Where {—l 5" + la‘ _S__ Z; -S- Lj4s1 — ;:I:—Z Bh - 1(61' + 6.1'+a—1)7
jt+e—2
Z 8 + 38j4e S Titea = L — Z O — 50j4e1,

i+
and 0,5 = nl/[(j — 1)! (s — 2)! (n — j — s 4+ 1)!]. From these examples
it is clear how one can, by analogy with the order statistic distribution of n inde-
pendent rectangular variates on (0, L), immediately set down any of the multi-
variate marginal distributions stemming from (3.3).

4. Outline of Derivation of Distribution of Coverage. Consider first
Pr {A\F = 0}. Denoting by y the position on (0, L) of the midpoint of the line
of length A, we observe that, for given &, in order to have zero coverage we must
have either some one of the following events occurring:

(4.1a) {z;+ 380 =y — 3N and i — 365 = y + 3N,

j=172;""n—1’

or ‘
(4.1b) n— 36 2y + 5
or

(4.1c) T, + 30, Sy — 3\

We consider this case in some detail, both because of its simplicity and because
it will serve to exemplify accurately the type if not the amount of tedious solving
of simultaneous inequalities which appears to be essential in the solution of the
problem.

From (4.1a) and (3.6), for a specific value of j, and from our assumptlons
on y, we must have

max {3}, ; + 36; + 3\ = y < min {z;11 — 38,51 — I\, L — 3N},
i—1

(4.2) 126;. + 36, S x; S zj — 3(8; + 8;11),

7 n
;51. + ¥ SrnSL— ;51: — 304
J

The bounds on y in (4.2) will evidently always be given by
(4.2&) Z; + %5;,‘ + )\ S xjp — 1'3].;_1 - 1‘-)\
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However, for (4.2a) to give rise to a non-zero probability, we must have

(4.2b) T; S Tiy — 3(8; + 8541) — N
Thus, from (4.2),
j—1
(4.2¢) ZI) &+ 30; S x; S i — 3(8; + 8i) — A,

which will only give rise to a non-zero probability if
; _
(42(1) Tj41 ; 21:5;; + %5]‘4.1 + A.

Hence, one can reduce (4.2) to

1 1 :
i+ 36 + 3N S Y = Tjp — 3050 — I\,
ji—1

(4.3) ’ ;6;, + 36; S z; = xjn — 3(8; + 8ja) — A,

j ) n
21:5h+'%3i+1+>\ szins=sL - ._'_Ez‘s"_ LI
J

Now we perform the transformations
j—1
U =T; — ;%,_ %65’
(4.4) ;
W= Tjp — 21:51» — 30i41,

to reduce (4.3) to

Lod i
ut Lt syset a-
(4.5) 0<usw-—)
ASw=s(L-T,).
(4.4) applied to (3.6) leads to a joint density for y, u, w,
n! WL — Ty —w)*
6 G-D—7-D1 @& -TyL

Integrating on y according to (4.4) one gets (4.6) multiplied by (w — u — \),
the important point being that the resultant expression is independent of the
segment size distribution except for the total length, T, of the n segments.
Since each possible § has probability 1/n!, it is evident that averaging over the
allocation of the A’s to the various orders does not change the result so far ob-
tained. Now, however, we sum on j from 1 ton — 1 to get_

n! (w—u—AN(L—Ti—w+u)""
(47) =2 @ = TL '
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Letting z = w — u — \ be a transform on u, and integrating on w and 2z one
~ gets the exact result for given T, ,

(4.8) Pr {\F =0|T,} =

Writing L = nu/V, T, = nA we have
. Ay

49)  PrivF =0 = [ (1= V(s — VAT — (VB/w)lgu(B) d5,

(L — T” _ )\)n+1
(L — T.)"L

where g.(A) is the density of A. It then foliows'by standard arguments that
(4.10) ImPr{\f =0} = (1 —V)exp — VA/(1 — V).

Now consider Pr {AF = A}. First we note that if A\ = A, complete coverage
can only be achieved when two or more of the A’s form a continuous line seg-
ment of length =\ and cover \; but from the continuity of the distribution of
segment midpoint coordinates, the probability of two or more of the A’s forming
a continuous line segment is zero. Thus we need only consider Pr {A\F = A} if
A < Ay . In such case, one must have for AF = )\, one of the disjoint events

(4.11) {w; — 38; Sy — I\ 25+ 38; = y + 3N, j=12 ---,n.

Taking into account (3.5) and the requirements on the limits for a non-zero
probability, (4.11) becomes, for a particular j,

0+ ISy S x4+ 38— I

(4.11a) it
Zah+26,3x,§L— Zs,.——s,, A< Ay

Integrating the joint density of y, x;, 8; over the indicated limits and using
L = nu/V, one gets for a given 7 and any permutation of the A’s

(4.11b) Pr {(A\F = A|j} = l_tt% f:u (z = N)p(x) dx,

independently of j. Thus the result cited earlier follows immediately.

Now we go on to discuss briefly the work involved in computing other con-
 tributions to the cumulative probability function of AF. If we ask for Pr {A\F < C}
we can distinguish, aside from the cases already considered, three distinct cases:

A. s of the segments lie completely within (y — 3\, ¥ + 3\); n — s.of the
segments lie completely outside (y — %A, ¥y + 3\); the segment farthest to the
left on (0, L) and still wholly within (y — 2\, ¥ + #\) may be the jth segment
on (0, L) counting from zero; j=1,2, -, n—s+1;8s=1,2, ---, n.
For a given s and j and permutation and position of the A’s it is evident that
AF = > i™7' 5, and one can verify that, in addition to the restrictions imposed
by the distribution of z and y, one must also satisfy, except for j = 1 or s = n,
max {zj1 + 3N + 381, Tiver — N + 3840}

J+s—1
Sysminfe; + - B, 00— M-, 05 X asC
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For the exceptional case where 7 = 1 but s # n, the inequalities to be satisfied
become, for given s,

o — N+ 38 Sy Sminf{z + I — 36, T — A — Fen), 0= Z‘_,Bhé ¢,

and forj = 1,5 = n,

T — N+ 3. Sy S o+ - a4, ogg&.

C.

I\

By an analysis similar to but somewhat more arduous than the cases already
considered, one obtains as the exact probability, for this case, that AF < C,

l n fmin(c,aAM) ]-L—X <n> (>\ _ x)s(L _ )‘\ _ y)n—-s+l
(412) L= o \s L—z—yr

ps(x)p{;—a(y) dy dx:

where p.(z), p.—s(y) are s- and (n — s)-fold convolutions respectively of the
segment size distribution. Since z + y = D1 A, we transform (4.12) to a sum
of integrals over the joint distribution of z and standardized  + y. An appro-
priate asymptotic argument gives, as cited in the summary,

© min(C,8A ) s
(413) (1-YV) Elj; [_O‘_Qs—'_@_]_ exp — a(N — z)p,(z) dz.

B. s — 1 of the segments lie completely within (y — £\, ¥ + 3\); one seg-
ment lies partially within (y — 3\, y + 3)\) and is the segment farthest to the
left on (0, L) and still having an interval in common with (y — 3\, y 4+ 3)\);
n — s segments lie completely outside (y — 3\, ¥ + %A). The partially covered
segment may be the jth segment on (0, L) counting from zero;j =1, 2, ---,

n—s+1;s=1,2, ---,n For a given s and j and permutation and position
of the A’s, one can show that, for admissible positions,
jts—1
N o=z —y+ 30 +0) + 2 &

and verify that, in addition to the restriction imposed by the distribution of x
and y one must also satisfy, for \F < C,

( jts—1

2 j+1 1
xj+§()\+8j)

Lia=s) \ <y < min

max < z; + 5

1
Tirs — 3 (N + 854s)

1
\mj+s—1 Y 5 (5j+s—1)
Tt is clear that there are again exceptional values of j and s for which the above
inequality must be slightly modified. We omit a detailed consideration. Further,
' by symmetry, it is clear that there will be an identical contribution to
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Pr {\F < C} when the single segment partially covered is the segment farthest
to the right on (0, L) and still having an interval in common with
(y — 3\, y + 3)). By increasingly tedious analysis of the relevant inequalities
one can show that except for terms of O(n™") the contrlbutlons to Pr {\F £ C}
for case B are given by

RGOV ==y

-(>\ —z—y)" ML —N—2z—w—2)""p(w,z,y) dzdw dy dx

(4.142)*

and

awy T 3] G T A A A Eoamen

AN—z—y) " (L—\N—2—w—2)""p(w,z,vy) dz dw dy dz,

where p(w, 2, ¥) = Pu—s(W)ps—1(y)p(x) and, as before, p,(z) is the r-fold con-
volution of p(x). Again noting  + y + w = Y_r A, we can transform (4.14a)
and (4.14b) to a series of integrals over the joint distribution of z, x, y, and
standardized z 4 y + w. From an asymptotic argument whose details we omit,

one obtains

e —y — )
(4.152)° an »=1-/ f S s—1D!

exp — a(A = y — 2)p.1(y) p(x) de dy dx

and

cexp — a(A — y — 2)p.1(y)p(zx) dz dy dx.

C. (s — 2) of the segments lie completely within (y — I\, ¥y + I\); two
segments lie partially within (y — $), ¥ + $A); n — s segments are completely
outside (y — 3\, ¥ + 3\). The partially covered segment on the left of
(y — I, y + iI\) may be the jth segment on (0,L) counting from zero;
7j=1L2 .- n—s+1;8=23, -

For a given s and 7 and permutation and admissible position of the A’s, one
can show that

jts—2

AN = 2; — Tjpea + N+ 3(8; + 8j451) + ; on
J

2 For notational simplicity we have written upper limits to x and y as C and C — z,
respectively; they should, of course, be min(C, As) and min[C — z, (s — 1)A, respectively.
¢ Remarks similar to footnote reference two apply here.
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and verify that, in addition to the restrictions imposed by the distribution of x
and ¥, one must also satisfy, for A\F < C,

max {2; + §(A — 8;), Tirsemr — F(A + 8j4e1)}
Sy S min{z; + 3N + 85), Tires — TN — §j401)}
) ‘ j+a—2
z; S C + Tjpor — 3(8; + §je1) — ;E+1 & — A\
There are again exceptional values of j and s for which the above inequalities
must be modified. We omit a detailed consideration.
By analyses of the type outlined above we can derive expressions for con-
" tributions to Pr {AF < C} of essentially the type already obtained for previous
cases. Unfortunately, this last case involves a rather large number of distinct
sub-cases; for brevity we give a typical result for this case,

T[T e

lexp — azlp,—2(y)p(22) p(21) dz dy dx, dxy »

if Ay < C = N\/2. Other contributions for this case differ only in limits of inte-
gration and values of C for which they are applicable.

“We close this section by remarking that one could in the results above replace
the convolution densities with appropriate Fourier integrals; reasonable speci-
fications of p(z) (e.g., that it be representable as a polynomial in z) would then
allow all necessary integration to proceed in a straightforward manner. How-
ever, it seems unlikely that such a computation would result in a useful repre-
sentation and therefore no such computation has been attempted.

One might also mention that the Fourier integral representation allows sum-
mation of all of the infinite series obtained above. The resultant integrals, how-
ever, do not appear tractable even under specific assumptions about the nature
of p(z). :

6. Mean and Variance of Coverage. Although the exact limiting distribution
of AF, has been given in Section 4, it has not been possible to derive useful forms
for the variance of A\F using this distribution result, except as described later in
this section under additional restrictions on the distribution. «

One can, however, compute the asymptotic (n — o, nu/L — V) expected
value of AF using the obvious fact that F is actually a sum of n (non-independ-
ent) random variables each with the same expectation. Thus if we denote the
portion of a segment of length A; which is covered by (y — X, y + 3A) by C.,
then ENF = Y% EC;. To compute EC;, it is necessary to consider two cases,

A. The segment is completely.covered. v

B. The segment is partially covered.

In case A, the particular segment can be the “j”’th segment,j = 1,2, --+ , n,
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in order on (0, L) and for any permutation of the A’s and particular 7, the co-
ordinate of the midpoint of the segment must satisfy

—iA—-8) =Sz sy+ih—38y)
in addition to the requirements imposed by the distribution of x and y. Again a

reduction of the relevant inequalities leads to a contribution to ENF, neglecting
terms of O(n™"),

14 fx z(\ — z)p(z) dz.
uw Jo

For case B, for particular j and permutation of the A’s, the additional require-
ment on z; is [if the particle covers the left boundary of (y — A, y + 3\)]

—3N+8) Sr; =y —3(N—95).

A reduction of the relevant inequalities leads to a contribution for this case
(which, from symmetry, we double)
A
1y 2*p(x) de.
v 2u Jo
Thus one has, neglecting terms of O(n™),

smin(MA )
ENF = AV zp(x) dz.
u Yo
However if A < Ay, it follows from (4.11b) that one has an additional contribu-

tion to EAF given by
AM
[ @~ M) do.
JTREY

Hence one can write

ENF = AV — lIf{
In

Unfortunately, it does not appear possible to calculate the variance in the man-
ner suggested by the preceding. Once again, in such a calculation, one encoun-
ters integrals of the type derived in Section 4. This suggests that the variance
of AF depends on p(x) in a quite complex way. This suggestion gains further
credence if one considers, as suggested at the close of Section 4, representing the
convolution densities by appropriate Fourier transforms. One can then see quite
readily that for quite general p(z) both the density and moments of AF involve

not only

Ay max(\A y)
f xp(x) dv — f)‘ (z — N)p(x) dx}.

min(\A x)

Aym
M(a) = ]; exp arp(zx) dz,

but derivatives thereof as well as related functions.
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One can, however, obtain a variance for A large (or more properly the vari-
ance of the asymptotic distribution for A large) from the following considera-
tions:

It is trivially true that E(AF)? = N’V>. We also have E(AF)? < AENF = \'V.
Hence, for some §°, 0 < 6 < 1, one has Var A\F = \*V(1 — V). Note that
* may be a function of A, V, or the segment size distribution, p(x). Now we
consider that part of the density of AF arising from (4.13); one has, for C < sAy,

(5.1) (1-=7) Lxs_!i)]sexp — a(A = C)ps(C).

In (5.1) we make the following transformations:
_[._v(x=0) vOO-O)T

(5.22) te s -0 V>]/ = V)]

and

(5.2b) z = (C — AV)/6\V (1 — V)]

(5.2a) suggests itself because of the Poisson factor in (5.1); (5.2b) is of course
the natural standardization for C. If one goes through the details of an asymp-
totic argument for fixed 2 and ¢ we find that for A — « we can write (5.1) as

(1—V)ﬁp<1—v)*~ [—t2_1 ol ( _wa -t )2]
(5.2) 27 o\ V P 5 271 — V)e? ? ¢ ¢
providing 6 = [(u/V\)]'6, where ¢ is a constant independent of . Integrating

on ¢ one finds that z will be asymptotically N (0, 1) providing

¢ — (1= M + (%/u"))]
x .

Thus one has as the variance of AF, for large A,
(5.3) Var \F = uV(1 — V)’[1 + (¢*/uD)].

It is easy to show that (5.3) also holds for A — « and ¥V — 0 but VA/u approach-
ing a constant; this result follows immediately upon appropriate substitutions
in the various integrals and going to the limits on A and V.

Also note that (5.2) has an “extraneous” factor (after integration on ¢) of
(1 — V)’ This is simply the probability, for large A, that one has non-zero
coverage and that all segments which are covered at all are completely covered.
A similar computation for (4.15a) and (4.15b) shows that the asymptotic
probability of non-zero coverage and partial coverage for one of the two end
segments on (y — 3\, y + 3\) is 2V(1 — V). By subtraction, since lima.o
Pr {(\F = 0} = 0and limy_,c Pr {AF = 1} = 0, the probability of non-zero cover-
age and partial coverage of both of the two end segments is V*.
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One can verify that the argument we have given depends on the fact that
VAN/p — o and N — . For VA/u — « and p — 0, we can show, assuming
(5.3) holds and ¢ < ku’ where k is a constant independent of u, that the cover-
age converges in probability to AV. Also note that as A — 0, the distribution of
coverage approaches a two point distribution,

(64) limoPr{\F =0} =1—7V; lim.,Pr{Af =2 =7.

APPENDIX
A Nearest Netghbor Problem

The distribution of Section 3 may be used to formulate and solve a nearest
neighbor problem which is at least suggestive of a correction to the same
problem in three dimensions when particle size and volume % are not

vanishingly small.

In the simplest version of the one-dimensional problem one assumes a set of
values 1, %z, -+ , &» randomly and independently selected on 0 < z = L,
and asks for the distribution of

(A1) dy = min | z; — L/2]|.

It is then easy to show that the cumulative distribution function of d; is given
by

(A.2) Fld) =1-1[1- (2d&/0)]", 0=d = L/2

The problem is essentially unchanged if we define the nearest neighbor dis-
tance as

(A3) d; = min | z; — z; | for some fixed <.
M

It can be shown that the cumulative of d, is
F(d) = 1 — [1 = (2&/L)]" + 2{[1 — (d/L)]" — (1 — (2d/L)"}/n
(A.4) if0=<d =< L/2,
=1— (2/n)[1 = (&/D)T", (L/2) = d: £ L,

which reduces to (A.2) for n large.

The generalization of the above, based on Section 3, is to consider a set of
segments A;, Ay, ---, A( 21 A; < L) with midpoint coordinates on (0, L)
21,2, -, 2, . We then define the nearest neighbor distance analogous to (A.3)
as

(A.5) ds = min {| z; — z;| — $(A; + 4;)} for some fixed <.
M
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It can be shown that

(19) (- ) ]
0 <d s (1—)L/2

_ _ 2 _ ) d3 " (1 - a)L < _
where @ = Dt A;/L. From (A.6) one finds the expected nearest neighbor dis-
tance is given by

(A7) [(1 = a)L/2(n + DI + (2/n)],

which differs from the analogous result based on (A.2) by the factor
(1 — a)[1 4 (2/n)] and from the result based on (A.4) by the factor (1 — a).
This suggests that as a plausible approximation for the three dimensional ex-

pected nearest neighbor distance [usually computed in generalization of (A. 2)]
one should use

(A8)

[‘3(1 4—7r¢x),>:|‘ r(;/;)

where p = V/n, V is the volume under consideration, a is the volume fraction
taken up by particles, and n is the total number of particles.

The result (A.6) is obtained by noting that z; may be any one of the n order
statistics on (0, L) so that if 2; is the rth order statistic the nearest neighbor seg-
ment will correspond either to the (» — 1)th or (r + 1)th order statistic. This
leads to a tedious analysis of inequalities along the lines indicated in Section 4.
Fortunately, it turns out to be unnecessary to pursue the analysis in complete
detail since one finds that F(ds) depends only on (1 — a)L and n. Since for
o = 0 one must obtain (A.4) and since the coupling of (1 — )L prevents any
change in form of the distribution for variation in e, it follows that F(ds) is
identical with F(dz) with (1 — «)L replacing L.

We also note that for (A.6) one has as the sth moment, ignoring terms of
order higher than O(n™%),

_ (1 — a)’L°T(s + 1I'(n + 1) .

(A9) B 2T(n + s + 1)

In particular

(1 — &)L (1 - a)2L2
4(n + 1)%(n + 2) 4n?
If one assumes that the A’s have a distribution and nu/L =

Eds; = ((1 — a)u)/2a; Var ds = ((1 — a)’u) /4d.

Var d3 =
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There are a large number of further statistical problems that one could de-
fine based on the distribution of Section 3. One that seems worth mentioning in
closing is the distribution of a randomly selected inter-segment distance (includ-
ing distance from zero to 1st segment and distance from last segment to L).
It is easy to show, denoting inter-segment distance by § and probability density
of § by h(3) that as n — «,

(A10)  A(8) = a/(u(1 = a)) exp —a5/(u(1 — @)) 0 = § < =.

Thus 5 = (1 — a)p/a, Vars = ((1 — a)%?) /o’

Note that (A.10) is completely analogous to the solution of a similar problem
for n independently distributed rectangular variates on (0, L). The only dif-
ference in (A.10) is the nature of the constant.
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