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1. Introduction. In this paper saddlepoint approximations will be obtained
for the Stirling numbers. Most of the discussion will be concerned with Stirling
numbers of the second kind, which are essentially the same thing as the differ-
ences of the powers of the integers at zero, A'0". The work is a direct application
of a saddlepoint theorem, Theorem 6.1 of Good [4], which was itself an extension
of a result given by Daniels [2]. This theorem enables us to approximate the
coefficients in a power of a power series in one variable having non-negative
real coefficients.

2. Differences of Powers at Zero. If the sequence 0", 17, 2", is differenced ¢
times, the result for argument 0 is commonly denoted by A‘0". For example,
A0" = 2" — 21" 4 0', and generally

o e U )

This formula is an immediate consequence of the binomial theorem, if A is
written in the form £ — 1, where E is the “suffix-raising operator’”’. See, for
example, Riordan [6], p. 13.

The differences of the powers at zero are essentially the same thing as the
Stirling numbers of the second kind, since A'0" = ¢!S(r, t). (The notation is
that used, for example, by Riordan [6], p. 91.) A table of A’0” for » < 25 was
presented by Stevens [7], and republished by Fisher and Yates [3], Table XXII.
When a power, z', is expressed as a linear combination of factorial powers,
S(r, t) is the coefficient of 2 = z(x — 1) --- (x — r + 1).

When r objects are thrown equiprobably into N cells, the probability that
precisely ¢ are occupied is

(1a) 1 N!

F'(N—t)!t!A

In a sense this is true even if ¢ > r, since A’0" then vanishes. The question of
calculating numerical values arises only if = ¢. In order to emphasise this fact
I shall write » = ¢t 4+ n, where n = 0.

The problem of testing for equiprobability of a multinomial distribution
arises in various practical problems, some of which are listed in Good [4], p. 862.
Various tests are discussed in this reference, together with conditions under
which they are appropriate. Stevens [7] gives two examples, one from agriculture
and one from genetics, in which it seems appropriate to use the number of empty
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250 1. J. GOOD

cells as the criterion. In general, the number of empty cells is an appropriate
criterion if, on the non-null hypothesis, an abundance of empty cells is to be
expected.

Formula (1) is convenient for the calculation of A‘0

t < exp (n/t).

Hsu [5] gave the following asymptotic expansion, which is convenient when
n = 0(t):

@) A‘o‘+"~“t2"[1 LA Bln) L R (w)]

2nn !

"+t if ¢ is small or if

where ‘

fi(n) = 320" + n),

fo(n) = f5(4n* — n* — 3n),

fi(n) = sto(40n® — 60n° — 2n* — 63n° + 133n° — 48n).
I shall give an asymptotic formula that is convenient if n/¢ is bounded above
and below by positive constants; i.e., if n/t is neither very small nor very large.
In the numerical examples I select values of ¢ and n for which the exact formula

above can be easily applied, and which are in the published tables.
The new asymptotic formula is

(t+ n)i(e® — 1)°
= 2xt[l + k — (1 + )% ]}?

[ +91(K) 925:) e _|_gy(x) +0<tv+l):|

AtOH-n ~
ot
(3)

where x = n/t, and p is the unique positive root of the equation
(4) p=(104+xA—¢").

and rules for calculating ¢, and g. will be given below. A table of roots of equation
(4) is given in the Appendix. All the functions g, , gz, - - - are rational functions
of p and «, and they take transcendental values when n > 0.

For example,

(2t)!(1-54414)‘[1 _ 010774 _ 0-00345 ]
2-73124(tY) ¢ t? )

The following numerical illustration shows that formula (5) gives a very good
approximation, even if only one, two, or three terms are taken.

(5) AtOZl ~

Numerical Illustration of Formulae (2) and (5)

t: 2 4 8
A2 14 40824 8.63559 X 1013
First term of (2) 4 4096 1.10 X 102
Three terms of (2) 14 38433 2.1 X 108
First term of (5) 14.815 41964 8.75389 X 1013
Two terms of (5) 14.017 40834 8.63600 X 1013

Three terms of (5) 14.004 40825 8.63553 X 101
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3. Derivation of New Formula. The proof of formula (3) depends on the
familiar fact that
A = (t+n)leln, t),
where c(n, t) is the coefficient of 2" in (f(z))’, where
(6) flz) = (e2 — 1)/z.

(See, for example, Riordan [6], p. 13.) We may now apply the saddlepoint
method, or, more easily, quote Theorem 6.1 of Good [4]. We obtain:

t
o(n, 1) ~ Sp)) {1 + 5 (BN = 5M)
crp"(27rt)*
(7)
+ — 1152t2 (168N\shs + 385A3 — 630A3 s — 24As + 105A]) + - }
where
(8) M=) = wlp)/o"y o= (k(p))}
(9) ks = Kks(p) = (8/0u)’(log f(pe"))|u=0 (s =1,2,3,--+),
(10) tof'(p) = nf(p).
Equation (4) is (10) with f(z) = (¢ — 1)/z. Quite generally
1 _of)
(11) K1 70o) Ks+1 pdp
from which we may calculate «; , k2, k3, - - - in turn. (I am taking the liberty of

regarding p as a continuous variable in some contexts and as a constant in
others.) In our problem,

(i =n/t=x k= (04 1)(o— k),

k2 = p(k1 + ke + 1) — ke — 2x1k2,

(12) Sk = p(1 4+ k1 + 26 + k) — k3 — 265 — 2kixs,

ks = p(1 4+ k1 + Bke + 33 + ks) — ks — Okokz — 2k1k4

ks = p(1 + k1 + 4Kz + 6ks + 4y + K5) — ks — 6Kk3 — Skaxs — ki .

Formula (3) is now established and it is clear that g, , g2, - - - are rational func-
tions of p and n/t, with rational coefficients that are absolute constants. Since,
for any n/t, p is transcendental, it follows that the g’s are too. In particular
they are irrational, so that in this respect formula (3) differs from Hsu’s formula,
and from Stirling’s formula for n!.

The table of numerical results given above makes formula (3) appear in too
favourable a light compared with (2). There are two reasons: (i) the terms of
(3) take longer to calculate, (ii) we took n = ¢, whereas formula (2) is designed
more for cases where n/t is small. In order to redress the balance, let us take



252 1. J. GOOD

t = 20, n = 2. We obtain the following results:

ADQ22 20! X 23485.
One term of (2) 20! X 20000.
Two terms of (2) 20! X 23333.3.
Three terms of (2) 20! X 23483.3.
Four terms of (2) 20! X 23484.7.
One term of (3) 20! X 24605.
Two terms of (3) 20! X 23150.

In this example, selected deliberately as likely to be unfavourable for formula
(8), its first term is nevertheless better than the first term of formula (2). But,
without heavy calculation, the first four terms of formula (2) give the answer
correct to the nearest integer.

4, Stirling Integers of the First Kind. For the Stirling integers of the first
kind, we have (—1)"t! s(n + ¢, t) = (n + t)! times the coefficient of z" in
[—z " log (1 — z)]'. (See, for example, Riordan [6], p. 42.) Hence we can obtain
an asymptotic formula from the saddlepoint theorem, valid if n/t is not small
or large. We here give the first term only, though the other terms could be
worked out as above.

(=1)*(n + t)![—log (1 — p)I’

(13) s(n + 4, 1) ~ N @rie)] ,
where
_(_1 t  \Y=r+)'
and p is now the unique root between 0 and 1 of the equation
t
15 p _n =+ -1 '
(15) A pled—p 1 Lt

(For example, we get s(8, 4) = 7007, the correct value being 6769. Here p =
0.71534.) It may be noted that { = log (1 — p) is the unique negative root of
the equation

_ 0 -t
(16) {—m(l—e ).
This equation is of almost exactly the same form as equation (4), and its solu-
tion is also tabulated in the Appendix.
Stirling numbers of the first kind are “inverse” to those of the second kind ir
the sense that if a factorial power, 2 is expressed as a linear function of ordinary
powers, s(r, t) is the coefficient of z'.

6. A Related Occupancy Problem. The above methods can be used in order
to obtain an asymptotic formula for the following occupancy probability, which
I mention here en passant because of its close relationship to Section 2. Suppose
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that n objects are thrown “at random” (equiprobably) into the fu cells of a
rectangular board of ¢ rows and u columns. Then the probability, p,, that no
row will contain more than one occupied cell is equal to the coefficient of z” in
the “pseudo-generating function”

n!
(tu)»
This is only a pseudo probability generating function since it depends on 7.

An asymptotic formula may therefore be obtained from the saddle-point
theorem with f(x) = ue* — u + 1.
The pseudo-generating function (17) may be deduced from the following
joint pseudo-generating function:
n! ¥ N T n!t{<“,> }
1 —_TI(1 —re) = T ) — :
(18) (tu)»,I_Il< +;,nz.lm!> wr (X utl
The terms of degree n in the expansion of (18) give the probabilities individually
of the legal fillings of the rectangular board. The total probability of all legal
fillings is therefore the coefficient of z" after putting all the z,., equal to z. (Note

the check that the probability is 1 if u = 1.)
The (true) exponential generating function is

17 (ue® — u + 1)

(19) gzo% = (uex/(tu) —u+ l)t

6. Appendix. Solution of equations (4) and (16). For any fixed values of n
and ¢ it would be a straightforward matter to solve equations (4) and (15) by
means of the Newton-Raphson iterative method. (See, for example, Buckingham
[1], index.) But since a free half-hour of time was available on a Pegasus com-
puter I used the logically simpler iteration pm+1 = f(pn), where, in equation (4),
f(p) = (1 +«)(1 — €). (See Table I.) The difference p, — p is approximately
a geometrical series, a fact that could be used, though it was not, to speed the
convergence considerably. I used the crude stopping rule |p, — pn—y| < 107". An
improved estimate of the solution is then

w0 107
T T ow) T o

depending on whether p, is an increasing or decreasing function of n. (It was
always one or the other in the present application.) I have made use of this
adjustment in Tables I and II, so that none of the results should be in error by
more than 107°,

This primitive iterative method would diverge if used for equation (16), with
F(8) = (14 )7'(1 = ¢™) (since |f’| > 1 at the root). Actually I put

1= p/(1 = p),
which converted (15) into n = (1 + «)log (1 + 7). This equation can be
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TABLE I
Solutions of equation (4),p = 1 +«) (1 —€)~*°
(The maximum error is 1 in the sixth place of decimals)

K P K p x [

0.80 1.318374 4.00 4.965114
0.02 .039737 0.82 1.346554 4.10 5.067892
0.04 .078961 0.84 1.374580 4.20 5.170453
0.06 117692 0.86 1.402454 4.30 5.272815
0.08 .155948 0.88 1.430180 4.40 5.374993
0.10 .193747 0.90 1.457763 4.50 5.477000
0.12 .231107 0.92 1.485204 4.60 5.578849
0.14 .268041 0.94 1.512508 4.70 5.680553
0.16 .304564 0.96 1.539678 4.80 5.782123
0.18 .340693 0.98 1.566715 4.90 5.883569
0.20 .376438 1.00 1.593624 5.00 5.984901
0.22 411815 1.10 1.726336 5.10 6.086127
0.24 .446838 . 1.20 1.856225 5.20 6.187256
0.26 .481507 1.30 1.983754 5.30 6.288295
0.28 .515846 1.40 2.108630 5.40 6.389251
0.30 .549861 1.50 2.231612 5.50 6.490131
0.32 .583562 1.60 2.352712 5.60 6.590940
0.34 .616959 1.70 2.472100 5.70 6.691684
0.36 .650061 1.80 2.589929 5.80 6.792368
0.38 682877 1.90 2.706335 5.90 6.892997
0.40 .715416 2.00 2.821439 6.00 6.993575
0.42 747685 2.10 2.935353 6.10 7.094107
0.44 779692 2.20 3.048175 6.20 7.194595
0.46 .811445 2.30 3.159994 6.30 7.295044
0.48 .842952 2.40 3.270894 6.40 7.395456
0.50 .874218 2.50 3.380947 6.50 7.495834
0.52 .905250 2.60 3.490221 6.60 7.596182
0.54 .936056 2.70 3.598779 6.70 7.696501
0.56 .966640 2.80 3.706676 6.80 7.796794
0.58 .997010 2.90 3.813964 6.90 7.897062
0.60 1.027170 3.00 3.920690 7.00 7.997309
0.62 1.057127 3.10 4.026899 7.10 8.097535
0.64 1.086884 3.20 4.132629 7.20 8.197743
0.66 1.116449 3.30 4.237918 7.30 8.297933
0.68 1.145824 3.40 4.342800 7.40 8.398107
0.70 1.175016 3.50 4.447305 7.50 8.498267
0.72 1.204029 3.60 4.551462 7.60 8.598414
0.74 1.232867 3.70 4.655298 7.70 8.698548
0.76 1.261534 3.80 4.758837 7.80 8.798672
0.78 1.290035 3.90 4.862102
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TABLE II

Solutions of equation (15), p = —(1 4+ x) (1 — p) log (1 — p)

(Strictly, 1/(1 — p) is tabulated. It is just as convenient as p for the calculaton of ex-
pressions (13) and (14). The maximum error is 1 in the sixth place of decimals.)

K 1/ - p) x 1/ - p) X 1/ — p)
3.50 12.289268 6.50 25.201892
0.10 1.206454 3.60 12.686463 6.60 25.662121
0.20 1.425039 3.70 13.086393 6.70 26.123969
0.30 1.654727 3.80 13.489996 6.80 26.587415
0.40 1.894642 3.90 13.894215 6.90 27.052438
0.50 2.144033 4.00 14.301995 7.00 27.519017
0.60 2.402248 4.10 14.712281 7.10 27.987132
0.70 2.668715 4.20 15.125022 7.20 28.456763
0.80 2.942931 4.30 15.540169 7.30 28.927890
0.90 3.224447 4.40 15.957675 7.40 29.400496
1.00 3.512863 4.50 16.377494 7.50 20 .874562
1.10 3.807819 4.60 16.799582 7.60 30.350069
1.20 4.108990 4.70 17.223897 7.70 30.827001
1.30 4.416081 4.80 17.650398 7.80 31.305340
1.40 4.728824 4.90 18.079045 7.90 31.785070
1.50 5.046970 5.00 18.509802 8.00 32.266175
1.60 5.370296 5.10 18.942631 8.10 32.748638
1.70 5.698591 5.20 19.377496 8.20 33.232445
1.80 6.031664 5.30 19.814364 8.30 33.717580
1.90 6.369336 5.40 20.253202 8.40 34.204028
2.00 6.711441 5.50 20.693977 8.50 34.691775
2.10 7.057824 5.60 21.136658 8.60 35.180806
2.20 7.408341 5.70 21.581215 8.70 35.671109
2.30 7.762856 5.80 22.027620 8.80 36.162668
2.40 8.121243 5.90 22.475843 8.90 36.655471
2.50 8.483382 6.00 22.925857 9.00 37.149505
2.60 8.849162 6.10 23.377636 9.10 37.644757
2.70 9.218476 6.20 23.831154 9.20 38.141214
2.80 9.591224 6.30 24.286385 9.30 38.638865
2.90 9.967313 6.40 24.743306 9.40 39.137696
3.00 10.346652
3.10 10.729156
3.20 11.114745
3.30 11.503341
3.40

11.894872
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solved by the above iterative method, thus 7.4 = (1 4+ «)log (1 4+ 7).
Table II lists the values of 7 + 1 = (1 — p)™, where p is the solution of equa-
tion (15).

I am indebted to the Admiralty for permission to publish this paper, and
for the use of the computer.
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