ON THE CODING THEOREM FOR THE NOISELESS CHANNEL!
By PaTrick BILLINGSLEY
Unaversity of Chicago

1. Introduction. The purpose of this paper is to examine the coding theorem
for a noiseless channel from a point of view different from the usual one. The
idea is to take the base s expansion of a point in the unit interval as a realization
of the stochastic process to be coded, and then to relate the compression a given
coding achieves to known properties of the unit interval, properties connected
with Hausdorff dimension and the Shannon-McMillan theorem. This leads to
results which in certain ways are sharper than the ones previously obtained.

Let @ = (0, 1] and let ® consist of the Borel subsets of . With each w we
associate its nonterminating base s expansion: w = 2 m_;Za(w)/s", where
Z(w) = 0,1, ---, s — 1. Then each z, is a measurable function on Q. If u is a
probability measure on ® then {x;,z., -} becomes a stochastic process.
Moreover, any stochastic process with state space (or alphabet)

co=1{0,1,+--,5s—1}
can be represented in this form, provided it is atomless. More precisely, let

{p(a1, -+, as)} be any consistent set of finite-dimensional distributions with
the property that

limg o (@1, -+, a,) =0

for any sequence (a;, @z, - *) of elements of . Then there exists a measure n
on ® such that

moizp(w) = a, k=1, -+, n} =pla, -+, an).

Clearly p will be atomless, or continuous. We will be concerned with such atom-
less measures p under which the process {z,} is stationary and ergodic, that is,
with measures u such that if 7" is defined by Tw = [sw] then T preserves p and
is ergodic under u. This representation of a. process has been used for other
purposes by Harris [7].

For the purposes of this paper a code ts a continuous, nondecreasing function
¢ on [0, 1] with ¢(0) = 0 and ¢(1) = 1. With each » we associate the nontermi-
nating base s expansion of ¢(w):¢(w) = D my Yn(w)/s", where

Yo(w) =0,1, .-+, 8 — 1.

Thus ¢ is a scheme for associating with each sequence x = (21, 22, ++-) of
symbols from o another such sequence y = (v, ¥z, + ). (For simplicity of
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notation we consider only codes with the same input and output alphabets.)
The code ¢ has the desirable property that for any atomless probability measure
on ®, there is probability one that in order to determine the first »n elements of
y one need only know a finite number of elements of . A second desirable prop-
erty would be that z can be uniquely recovered from y. We will, for each prob-
ability measure on ®, produce a code for which this recoverability condition
holds, with probability one, and which is optimal, in a certain sense, among all
codes, even those not having this property.

Note that if ¢ is simply assumed to be a mapping from [0, 1] to [0, 1] such
that for all z and y, x is uniquely recoverable from y and the first n elements of
y are determined by some finite number of elements of x, then it follows that ¢
is continuous and either increasing or decreasing. The definition above consti-
tutes a slight weakening of these requirements—there is no real loss of generality
in excluding the decreasing case and requiring ¢(0) = 0, ¢(1) = 1.

The efficiency of a code is measured by the amount it compresses a sequence
(1, +++,2,). Foranyw e Qand n = 1, let

Un(w) = {0 :z3(0") = (), k=1, -+, n}.

Thus u.(w) is that s-adic interval of rank =, that is, that interval of the form
(1/s", (1 + 1)/s™, which contains w. Now if the first n symbols of the expansion
of w are known then v = u,(w) is known, and it is known that ¢(w) & ¢(u).
If (¢(u)) denotes the smallest s-adic interval containing ¢(u), then the number
of symbols in the expansion of ¢(w) which can be determined at this stage is
exactly the rank of the s-adic interval (¢(u)). But the rank of (¢(u)) is clearly
—lg, A(¢(u)), where A denotes Lebesgue measure. Thus the first n symbols in
the expansion of w determine exactly —lg, A{¢(u.(w))) symbols in the expansion
of ¢(w). Therefore the compression effected by the code ¢ on the first n symbols
in the expansion of w is

(1.1) Co(w) = - 1gs Mg (un(w))).

To simplify the mathematics we will, in the first part of the paper, replace
C.(w) by

(1.2) Du(w) = —n" lgs M (un(w))).

(See the remarks at the end of the following paragraph.)
A code is efficient if C,(w) is small in some asymptotic sense. Let

Cy(w) = limg,e Cu(w),
if this limit exists, and let
C3(w) = lim inf, e Ch(w).

Define Dy(w) and Dy (w) similarly in terms of D,(w). Suppose we are given a
stationary, atomless, ergodic probability measure u. If F(a) = u(0, ], that is
if ¥ is the distribution function corresponding to u, then F is a code. It is shown
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in Section 2 that for this code we have
(1.3) ww:Dp(w) = h} =1,

where h is the relative entropy of {x,} under u. (The relative entropy is the
entropy divided by lg s; see [8].) It is shown that in a special case F reduces to
Fano coding. In Section 3 it is shown that if ¢ is any code then

(14) ww:Dy(w) < h} = 0.

Thus F achieves maximum efficiency. The methods used to establish (1.4) are
those of Hausdorff dimension theory [1, 2]. In Section 4 we investigate the ex-
tent to which it is possible to replace D,(w) by C,(w) in these results. In par-
ticular, it is shown that (1.3) still holds if Dr(w) is replaced by Cr(w).

In [9] Kinney has exhibited a relation between Hausdorff dimension and the
capacity of a noiseless channel in which the letters are of different durations. In
this paper the letters are assumed all to have the same duration, so that the
channel has capacity 1g s.

For treatments of the noiseless coding theorem from other points of view see
Feinstein [4] and Khinchine [8].

2. The Code F. As in Section 1, let F(a) = u(0, o]. Then, as a code, F' has the
desirable property that the set of w such that F(w) = F(w’) for some o’ # w,
has p-measure 0. In other words the original sequence can be recovered from the
encoded sequence, with probability one.

TaroREM 2.1. If u is atomless, stationary and ergodic, then

(2.1) ww:Dr(w) = b} =1,

where h s the relative entropy of {x.} under u.

Proor. Since F(a) = u(0, a] and u is atomless, A(F(u)) = u(u) for any
interval u. (This is just a paraphrase of the assertion that if X is a random
variable with continuous distribution function H(z), then H(X) is a random
variable which is uniformly distributed on the unit interval.) Therefore

D.(w) = —n " lgs u(un(w)).

And now (2.1) follows immediately from Breiman’s version of the Shannon-
MecMillan theorem [3].

Note that the coded process, defined by F(w) = D meiya(w)/s", is inde-
pendent and satisfies p{w:ya(w) = ¢} = 1/s. From this it follows that F does
not commute with the shift Tw = [sw], that is, F(Tw) and TF(w) are in general
distinct. For otherwise the processes {z,} and {y.} would be conjugate (see [6]),
which they are not (unless F(w) = ).

Note also that since D, (w) converges to hin Ly(p), we have [oDn(w)u(dw) — h,
so that the average compression is also k in the limit.

8. The General Code. We now show that the code F of the preceding section
is optimal in the sense that no code ¢ has a compression ratio smaller than .
Specifically, we have the following result.
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TraroREM 3.1. If u is atomless, stationary and ergodic, and if ¢ s any code, then
(3.1) ww:Dy(w) < h} =0,

where h ts the relative entropy of {x,} under u.

ProoF. Let » be the probability measure on ® with ¢ as its distribution func-
tion. Since ¢ is continuous, » has no atoms and for any interval u, #(u) = A(¢(u)).
Therefore

_ 1 _ g v(ua(e) [ 1 1
Dn(w) = ;&lg, V(un(w)) = m{ ’ﬁlgs #(un(w))f .

Since the second factor on the right goes to h almost everywhere, we have

_ o lg v(un(w)
D = A lim inf 2 — 2"
o) = b (@)
except on a set of u-measure 0. Therefore, in order to prove (3.1), it suffices to
show that if 6 < h then

e o lg v(un(w)) 0| _
82) “{““‘“m“fM = z} = 0.

We prove (3.2) by using results from the theory of Hausdorff dimension. For
any set M C Q and probability measure p on ® we define the dimension dim, M
of M relative to u in the following way. Consider a sum )_; u(v;) %, where & > 0
and {v;} is a collection of s-adic intervals covering M (that is, M < U;), with
r(v;) < p for each 7. The infimum of such sums we denote by L,(M, «, p). As
p decreases to 0, L,(M, a, p) increases to a limit L.(M, ), and dim, M is de-

fined by
dim, M = sup {a:L,(M, a) = «} = iof {a: L, (M, a) = 0}.

See [1, 2] for the details. If p is Lebesgue measure, then dim, M is the classical
Hausdorff dimension of M (see [1, Section 3]).
The result relevant to coding theory is the following one (Theorem 2.1 of

2D).

If u and v are probability measures on ®, and if p is atomless, then

T () }
(33) d‘m“{ i i g ) = O =%

Applying this result with 6 = 6/h we have

. e o lgv(u,(w) _ 8
dim, {w.hryg;nfm < ﬁ} <1
if 8 < h. But any set of positive p-measure has u-dimension 1. This proves (3.2)
and the theorem.
It is possible to prove (3.2) without explicitly introducing the notion of Haus-
dorff dimension. This is somewhat unsatisfactory since it removes the arguments
used to establish (3.3) from their natural context. In any case, the proof goes as
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follows. Take 6/h = 1 — € and let A be the set of w for which »(un(w)) =
#(ua(w))*"¢ for infinitely many n. Since the set in brackets in (3.2) is contained
in A, it suffices to show that u(4) = 0. Let p be an arbitrarily small positive
number and let U be the set of those s-adic intervals .u,(w), with « & A4, for
which p(us(w)) < p and »(un(w)) = w(un(w))' ™. From the definition of A
and the fact that u is atomless it follows that the elements of U cover 4. Let ©
consist of those elements of U which are not subsets of other elements of al.
Then the collection U of s-adic intervals cover A and is disjoint. Moreover
u(v) < pand »(v) = u(v)'" for any v £ V. Therefore

12 EV(v) = Eu(v)l_e Z#(v) p u(A).

Thus u(4) = p° for any p > 0, and it follows that u(4) = 0. The point is that
if w lies in A then the function ¢ is increasing very rapidly at w, and if u(A4)
were positive, the function ¢ could not remain bounded.

In Section 1 we made the assumption that ¢(0) = 0 and ¢(1) = 1. If we only
assume 0 = ¢(0) < ¢(1) =< 1, we can define » by »(0, a] = ¢(a) — ¢(0). Then
v will be a finite measure, though not a probablhty measure, and the above
argument still goes through.

Since D¢(w) = h except on a set of p-measure 0, an application of Fatou’s
lemma, yields

(34) lim inf D (0)p(dw) =

n-»>0
Thus h is the minimal average compression as well as the minimum in the sense
of (3.1). With somewhat different definitions and assumptions, Khinchine has
proved (3.4) with the limit inferior replaced by a limit superior (see pp. 23 ff.
of [8]).

As an example suppose that s = 4 and that under u the process {x,} is inde-
pendent with pf{w:z.(w) = ¢} = p;, where po = 3, ;1 = },and p, = p; = %
Fano coding (see [10]) proceeds in the following manner. Each symbol z, in
the z-sequence is replaced by a set of 0’s and 1’s according to the following rule.

0—0
1—10
2 — 110
3 — 111.

Thus (21, 22, -+ +) is replaced by a sequence of binary digits. These digits are
then grouped in two’s and put in base four again by the rule

00 — 0
01 —»1
10 — 2
11 — 3.
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For example, (0,1, 3,2,0, ---) becomes (1,1,3,3,0, ---). If, for each w, the
sequence (z1(w), z2(w), ---) is transformed in this fashion into a sequence
(41, Y2, -+ +), and if we define ¢p(w) = D51 ¥a/4", then it is not difficult to
show that ¢ is just the distribution function corresponding to the measure p
defined above. Therefore, by Theorems 2.1 and 3.1, the code ¢ is optimal and
achieves a compression of h = , as is well known.

In the preceding example we showed that a code was optimal for a process by
observing that, viewed as a function on [0, 1], it is the distribution function
corresponding to the process. As a second example, we construct an optimal
code by starting from the distribution function. Suppose that s = 3 and that
{z,} is independent with p{w:z.(w) = 2} = p;, Po = P2 = %, ;1 = 0. In this
case the corresponding distribution function is just the Cantor function. There-
fore the optimal coding rule is to replace each 2 in the z-sequence by a 1 and to
convert the resulting sequence of 0’s and 1’s, viewed as a binary expansion, to
base 3. The resulting compression ratio, lg 2/lg 3, is just that achieved by con-
verting from base 2 to base 3.

4. Replacement of D, by C,. In Section 2 and Section 3 we used D,(w), as
defined by (1.2), instead of C,(w), as defined by (1.1), to simplify the mathe-
matics. Now C,(w) and D,(w) have the same asymptotic properties for any w
for which

: lgc )\<¢(un(w)))
4.1 lim 22l =
(41) A T A ua(@))
Fix wand let y = ¢(w), (¥ — €n, ¥ + s = ¢(ua(w)), and let v, be the smallest
s-adic interval containing (y — €., ¥ + 68.]. We will first determine conditions
on y, in terms of its nonterminating base s expansion y = Dy ¥»/s", which
ensure that

. lg. )\(vn) _
Mgt
For each n, let N, = N,(y) be the length of the run of either 0’s or (s — 1)’s

following y. in the expansion of y. That is, determine N, by the requirement
that either

(42)

Ynil = Yngz = *** = Ynin, = 0 5 Ynyn, 11
or else
Ynil = Yn42 = *** = Ynin, = 8 — 1 5 Ynywyua.

If Yn4a is neither O nor s — 1 then N, = 0.

TueoreM 4.1. If e, | 0,8, | 0, e&x + 8. > 0, and if lim,.s Na(y)/n = 0
then (4.2) holds.

Proor. Since 1g, N(v,,)/1g: (ex + 8.) = 1, it suffices to show that
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lg8 )\(vn)
lim inf —22 =277 > 1,
e 18, (0 + 87) =

The s-adic interval v, can be determined in the following way. Let »(n) be the
largest integer » such that

(4.3) (y — €&, Y + 6n] c <Z

That »(n) is finite follows from the assumption that e, + 6, > 0. Now v, is
just. the right-hand member of (4.3) with » = »(n). Therefore lg, A\(v,) =
—v(n) and we must prove that

U+l

st st

.. v(n)
_— . 2 1.
From the fact that »(n) is maximal it follows that either y — e, < DRy /st
orelse y + 8, > X :P*y/s + 1/, Hence, writing§: = s — 1 — y;,
one or the other of the relations

© o
@> 2, y/s, > X §is
T=v(n)+2 =y (n)+2

holds. But the right-hand member of each of these two inequalities is not less
than ¢ P™+2HNin)] Therefore —1g, (e + 8,) = »(n) + 2 + N, 42, and it
suffices to prove that

lim inf v(n) 1.
' n>e v(n) + 2+ Ny(n)+2
Since e, + 6, goes to 0, »(n) goes to infinity as n does. Hence it is enough to

show that

v

2
k+ N

But this follows immediately from the assumption that lim; Nx/k = 0.

There remains the question of the size of the y-set where lim, N.(y)/n = 0.

TaEOREM 4.2. The set of y in the unit interval for which lim,., N.(y)/n = 0
has Lebesgue measure 1.

Proor. Since M{y:N.(y) = ne¢ = 257 it follows from the Borel-Cantelli
lemma that AM{y:N.(y) = nei.o.} = 0. From this the theorem follows immedi-
ately. (It is possible to prove the stronger result that N.(y) = 0(lg n) except
on a set of Lebesgue measure 0. See problem 5, p. 197 of [5].)

It follows immediately from Theorems 4.1 and 4.2 that we can replace Dr(w)
by Cr(w) in Theorem 2.1. In fact, if U is the set of y for which lim, N.(y)/n = 0
then A\(U) = 1. But F(w) ¢ Uif and only if w € F'U, and u(F'U) = \(U) = 1.
Therefore (4.1) holds except for  in a set of py-measure 0.

Similarly we can replace D3(w) by C3(w) in Theorem 3.1, provided
u(¢7U) = 1. General conditions under which this holds seem difficult to obtain.

hm 1nf k— = 1.




A NOISELESS CHANNEL CODING THEOREM 601

REFERENCES

[1] PaTricK BiLLinNesLEY, ‘‘Hausdorff dimension in probability theory,” Ill. J. Math.
Vol. 4 (1960), pp. 187-209.
[2] PaTricK BiLLiNGsLEY, ‘“Hausdorff dimension in probability theory I1,”” Ill. J. Math.,
to appear.
[3] Leo BremMAN, ‘“The individual ergodic theorem of information theory,” Ann. Math.
Stat., Vol. 28 (1957), pp. 809-811; ‘“‘Correction note,” Ann. Math. Stat., Vol. 31
(1960), pp. 809-810.
[4] AmieL FEINsTIN, Foundations of Information Theory, McGraw-Hill, New York, 1958.
[5] WiLLiam FELLER, An Introduction to Probability Theory and its Applications, 2nd. ed.,
John Wiley and Sons, New York, 1957.
[6] PauL R. HoLmos, Entropy in Ergodic Theory, mimeographed notes, The University
of Chicago, 1959.
[7]1 T. E. Hagris, ““On chains of infinite order,’’ Pacific J. Math., Vol. 5 (1955), pp. 707-724.
(8] A. I. KuincHINE, Mathematical Foundations of Information Theory, Dover Pub.,
New York, 1957.
[91 J. R. KinngY, “Singular functions associated with Markov chains,” Proc. Amer.
Math. Soc., Vol. 9 (1958), pp. 603-608.
[10] C. SmANNON, ‘“‘A mathematical theory of communication,” Bell System Tech. J.,
Vol. 27 (1948), pp. 379-423.



