LIMIT DISTRIBUTIONS IN THE THEORY OF COUNTERS

By G. SANKARANARAYANAN

Annamalai University, India

1. Introduction. Let us suppose that particles that arrive on the counter be
randomly spaced on the positive time axis. In an actual counter each particle
arriving in the time interval (0, « ) independently of others gives rise to an im-
pulse with probability p or 1 according to whether at this instant there is an
impulse present or not. Hence the counter is in one or other of two mutually
exclusive states which we denote by A and B. The counter is in state A when no
impulse covers the instant and is in state B otherwise and it assumes the states
A and B alternatively. A particle striking the counter is recorded if and only if
the counter is in state A. If p = 0 ,we get the type I counter and if p = 1, we
get the type II counter.

Let &, 4,4 - - - be the instants at which particles arrive and x1 , x2 , x3 , - * be
the lengths of successive impulses. Let 71, 72, 75 - - - be the instants of successive
recordings. Let us assume that the time from an arbitrary point in the positive
time axis to the time of arrival of the first particle that follows it is a random
variable with distribution function F(z). Hence the differences {t-41 — &},
r=1,2 8, , are identically distributed random variables independent of
each other with a distribution function F(z). Let the time durations of the
impulses be independent and identically distributed random variables with
the distribution function H(z). Let these random variables be independent
of the instants of arrivals and of the events of the realizations of the impulses.
Let », denote the number of registered particles in the time interval (0, ). Let
the process start in state A. Let us denote by &, n1, &, 72, - - - the times spent
in states 4 and B respectively. Consequently {£,} and {7} are independent
sequences of identically distributed positive random variables. It can be seen
that Pr[¢, < z] = F(z), z > 0. Let Pr[g, < 2] = U(), 2 > 0. It can also
be seen that the instants of transitions A — B coincide with the instants .,

n=123, - .Hence the time differences { 7.+1 — 7.} are identically distributed
random variables whose distribution function G(z) is given by
(L1) G(z) = F@»U@) = [ Ula — ) dF@).

In [8] Takécs has shown that »,, suitably normalized, is asymptotically nor-
mal. In [9] Takécs has considered the asymptotic behavior of »./t. Here he has
also applied the law of the iterated logarithm, as stated by P. Hartman and A.
Wintner [5], to »,. In this paper we consider the asymptotic (~) behaviour of
v, when F(z) and H(z) follow the stable laws with suitable characteristic ex-
ponents and we show that »,, suitably normalized, tends to the Mittag-Leffler
distribution for all counters of the types detailed above.
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1272 G. SANKARANARAYANAN
2. Definitions and notations. Let

r(s) = j: e “dF (z)

and
w(s) = l ¢ dU(x),
so that
v(s) = f” e " dG(z) = r(s) -w(s).

o
Also

Pr[n £ 2] = F(x).
Let

W(t, n) = Prlv, < n)
(21) =1—"Pr [Tn+1 é t]
1 — F(t)*G.(2),

where (,(t) is the n-fold convolution of G(t) with itself and Go(¢) = 1if ¢t = 0
and 0 otherwise. So

Prv: = n] = F(t)*Gua(t) — F(t)5G.(t).
Let my(t) be the kth moment of »,,

m(t) = iln"[F(t)*Gn_l(t) — F(t)*G.(1)]

(22) w
= n2=0[(n + 1)* — 2f-[1 — W(t, n)].
Also
fo e dmi(t) = s]; e’ mk(t) dt
=3 f” e io [(n4 1) —=2"]-[1 = W(t,n)ldt
(2.3) ° .

= s [(n+1)* — ] f° L — Wt n)] de
n=0 (]

— () 5'; [(n + 1)* — v (s)]".

Interchange of summation and integration is valid since all the terms on the
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right side of (2.2) are positive. Let N(¢) be the number of particles arriving in
the counter in the time interval (0, ¢). Let

Qu.(¢) = PrN(t) = n].
So
Pr(N(t) £ n] =Pr[t £ tuyd]
=1-F n+1(t):
where F,11(t) is the n + 1-fold convolution of F(t) with itself. So D ¢ Q.(t) =
1 — Fru(t) and hence
(25) Qu(t) = Fa(t) — Faia(2).
3. Type II counter. Consider the type IT counter. Let P,(t) denote the prob-
ability that at the instant ¢, the system is in state 4.
Pit) =Pr(t<m)+Pr(n—&<t<n)+Pr(n—§<t< T.o,) + .-
=Pr(t<m)+[Pr(t<m)—Pr(t=<t+m) |
(3.1) +Pr(t<m)—Pr@Z<t+m+b+mn)l+- -

= gG,,(t) - gG"(t)*F(t)'

P4(t) can also be got as follows. If we know that in the time interval (0, ¢)
exactly n particles arrive at the counter (the probability of which is @.(t)),
then the occurrence points of these n events may be regarded as independent
uniformly distributed points in time interval (0, £). The probability that an
impulse started at a random point will end before the instant ¢ is p: =
(1/t) [4 H(x) dz. Because of independence the probability that all the n im-
pulses started at random points will end before the instant ¢ is (p.)". So

S a0 @)”

(24)

P4(t)

00

2 [Fu(t) — Faua(®)l(p)"

n=0

L= (1= p) E R0 )™

(3.2)

Also using (3.1), we see that
f e PLu(t) dt = f e [Z‘, G.(t) — }'_‘,0 Gn(t)*F(t):I dt
0 0 n=l

n=0

(33) = (57 (1 = v(8)™ = #(s)/(1 — 7(s))}
=[1 — r(s)l/s[l — v(s)].
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Hence

@© —1
(34) ¥(8) =1 — (1 —r(s)) [sf et Pu(t) dt] .
0
4. A lemma. We now state a lemma which can be got as the converse of a
theorem [[4] Theorem 108, p. 168] by an obvious change of variables.

LemMA. Let L(x) be such that L(cx) ~ L(x) for every positive ¢ (as x — = ).
Then

(4.1) Eo e ~ N LOA)T(a + 1), asA—> ®,0>0,a> 0,
if

(42) A(n) =a+ a1+ a+ - + an ~ (1/8)n*L(n"), asn — .
In particwar, if 6 = 1 and e = z, we get

(4.3) annx" ~ (log 1/z)~*L{[log (1/2)] "} T(a + 1), asz — 1,
of

(44) A(n) =a+a + -+ + a, ~n°L(n), asn — «,

Using this lemma in (2.3), we get
fo & dmi() = 1(s) 32 [(n + 1)* — nl(x(s)"

~r(s)log {1/y(s)}T* T(k + 1), ass— 0.

6. Asymptotic behavior of P,(t) in a type II counter. We prove the following

theorem.
THEOREM 5.1. In a type II counter, if F(1) has a characteristic function ¢(N\)

of form:

(5.1) logo(A) = cT(—a)lcos (wa/2) — <(N/|N]) sin (wa/2)]A|*

with ¢ > 0 and 0 < a < 1 and further if p: be chosen such that

(5.2) 1—p~NP ast — o
where 8 < a and \ are constants, then

(5.3) P4(t) ~ (¢/ha)t ", ast— o,

ReMARK 1. In [3] it is shown that the characteristic function ¢()) of the stable
law is of the form

(54)  log (M) = iyt + eT(—a)cos ([ra/2] -+ 8(N/|A|) sin (wa/2)]]N|

where 0 < a < 1,¢ > 0, —1 = 8 = 1, and v is any real number. In particular,
if y = 0and 8 = —1[[6] p. 200], $(N) represents the characteristic function of
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a positive random variable. In Theorem 5.1 we have taken a distribution function
with this characteristic function. This stable law for F(t) correspond to well
known recurrent processes [10, 11] which describe the arrivals of particles to
the counter.

Remarx IL. If H(z) ~1 — N1 — B)zf, as z — «, then p, has the property

l—pt)\t_p, ast— .

Proor. In our case [6] F(t) can be put in the form

(5.5) F@t) =1 — [¢/a + (®)1(1/t%), 0<t< .
where e(t) — 0 as t{ — «. Also

(5.6) Fa(t) = F(t/n"'*) = 1 —[nc/a +n e(t/n"*)](1/t%).

From (3.3) )

Put) = 1 — (1= p) S F(O(@)™

(1 - pa 311 = Fa)(p)™

o1 = PO Sy n(p) ™+ (L= pIE I /") ()"

1411
where

I= 0(1 - pg)aﬁlt—a; n(pt)"—l

c/{at®(1 — P},

and
= (1 - p) S n et/ (00"
Consider the sum
(57) R() = (1= p)* 2 e(t/n*) ()"
Using the theorem in the appendix, when a S 3

R() < (1 —p)? 2 n(p)"™ Kol O-oyetit=a)

n=1

K;n(1+a)/(l—a)t—a(l+a)/(l—a) +

' ) —af (1—
Ksnll(l a)t al(1—a) +

K;nt_“ + K;n(‘z—a)l(l—a)t—a(2—a)/(1—a)}
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where K , i = 1,2, 3, 4, 5 are constants independent of t. So

R() S (1= p)H(KLA™00) 3 a0 (p)™ +
(K;/ta(l+a)/(l-a)) i n?l(l—a)(pt)n—l _|_
(Kg/tall—a) i n(z—a)/(l—a)(pt)n—l +
(K3 ()™
(K;/ta@—a)l(l—a)) Z:o: nf3—2a)l(l—a) (pt)n—l}

~ (1 — p )KL/t {1/ (1 — p) 47} +
(K, /g2ty /(] — p,)@0-0y 4
(KL/t209) (1/(1 — p,) @2y 4
(Kot -(1/(1 — po)} +
(KL/te@ 00y (1/(1 — p) 47T o o
(K169} (1/(1 — po)¥*™) +
(K, /(20 @1a=oy (1 /(] — p,)0+aiG=ay 4
(K /17 {1/ (1 = p)" ) 4
(Ki/t%)-(1/(1 — po)} +
(K4t 0= 1 /(1 — p) @ o w,
Since 1 — pe ~ NP, 1 — o,
R(t) < Kj/{\&/0-9getePit=ay 4
K/t Gmadtatepid-ay |
(5.8) K;/{)\l/(l—a)t(a—a)/(l_a)} +
Ki/iN*P) +
K /(\G (@ 0=a) (el 0=a)y
Hence when 8 < qa,
R(t) —0, ast— oo,

When o = 1, using the theorem in the appendix,
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RO = (1= p)*S alp)™

n=1

(K7 (¢/n*)7h) + K7 (t/n*) 7 + K§ (t/02) " + Ki(n/t) (log t — 2 log n)]
< (1= S e

(KT (n/t) + K7 (n*/t) 4+ K§ (n*/t) + K{(nlogt)/t — Ki(2nlogn)/t

where K7, 1 = 1,2, 3, 4 are constants independent of ¢. So
R() S (1= p)IKI/D) S ntp)™™ + (KU 3 w0 +
(KE/) 3w )™ + (KT log 07 3 w'(p) ™ —
(2 Ki/8) i n* log n(pe)""].

~ (K{/8)-{1/(1 = po)} + (K5/8)-{1/(1 — p)%} +
(KZ/)-(1/(1 — oY} + (K (log 1)/8)-(1/(1 — po)} —
(2 K{/8)-{1/(1 — p)**9.
So
R(t) = Ki/(N%P} + K7 /(0P4P) + K3 /(N ) +
KY{ (log t)/{N*P} — 2 Ky /(\"FegPa+ay,

Here ¢ is a small positive number which can be taken as small as we like so that
e < (1 —28)/2B. So when 8 < %, R(t) — 0 as t — - Hence what ever be the
value of ¢ in 0 < a < 1, when 8 < «, R(f) —» 0 ast — ». So when 8 < «,
II in (5.8) is negligible compared to I. Hence

P4(t) ~ {e/(at®)}-{1/(1 = po)}, t— o

~ {e/(Aa)} 7P, t— o,

(5.9)

(5.10)

6. Asymptotic behavior of », in a type II counter.
TuEOREM 6.1. With the same assumptions on F(t) and p. as in Theorem 5.1,
we have,

. Vi _
o i | e 5 2] ~ 900

where

62) o) = 0/ [ {5 =151 sin Gir s + 0o dy
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and
(63) K(a,B) =T(1 — a+ B)/T(1 — a).
Proor. From (5.3), we have,
(6.4) P.(t) = {¢/a)}t™?, t =4,
Also P.(t) = 1, whent = 0. So

o —st — ® —gt ;—(a—p) to —8t
sfo U PL(8) dt = [(es)/(ha)] ft D gy 4 sfo P (1) dt
(6.5) = [(es)/ 0] [ " e gy
0 -~
" et gy + s f N e PL(t) dt.
0

t
0

— l(es)/ 0] |

In (6.5), the second integral is less than ' *™/(1 — & 4+ 8) and the third
is less than M (1 — ¢™*°) s where M is a constant. So

cI'(l — a +p)

(66) s [ Pa i TLZ D), 50,
It follows from (5.1) that
Y - _ _cI"(l —a) o
r(s) = j; e " dF(t) —-exp[ ————a—-———s].
Using (3.4),
1 — {1 — (Q/a)eT(1 — a)s*}] .
YO~ - T — et ppare] 0 070
(1 — a)s .
NI_I‘—_———(I—a+B)’ s — 0.
Using (4.5) we have
[1 — (1/a)el'(1 — @)s*IT(k + 1) s 0

f‘b e—” dm,,(t) ~ % )
AN(1 — o)
0 {‘]"g [1 Tl -ath sﬁ]}
o IME+1
l: (1 — a)s® :Ik )
'l —oa+8)

Using Karamata’s Tauberian theorem [12], we get

(6.8)
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N Tk + 1)¢* -
o) ™) ~ TG = QT = « + AV AT T
Tk +1) [t"K(a, ﬁ)]" t— oo
T8k + 1) A ’
where K(a, 8) and 8 are given by (6.3) and (5.2). That is
Vi i F(k + 1) —
(6.10) B [[tﬂK(a, ﬂ)}/x] NESE it
Hence
. Vi _
(@) i | gy 5 ] = o0

where gB(z) is defined by (6.2).

7. Type I counter. For a type I counter, U(z) = H(z). So y(s) = r(s) W'(s)
where W'(s) = [¢ ¢ *“dH(x). Assuming that m = [¢ xdH (x) exists and F(t)
has the same form as in Theorem 5.1, we find that

v(s) = r(s) W'(s)
exp [(—¢/a)T(1 — a)s]-{1 — sm + -+ -}

~1—=(c/a)T(1 — a)s°, as s — .,

(7.1)

Hence in this case,

g r'(k+1)
(72) 1; e dmy(t) ~ (/T = s’ s—0
Using Karamata’s theorem [12]
r(k + 1)¢* e
(@8) ) ~ [T — @b + D) b

Hence we have

TaroreM 7.1. For a type I counter with F(t) as in Theorem 5.1. and an H(z)
having the first moment,

Ve

(74) o P [(w)/[cr(l 5] = 0@
where g.(x) is defined by (6.2).

8. Actual counter. In the actual counter described in Section 1,

(8.1) P.(t) = ; Q1) ()’
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where

(82) & =%, 0.0 (") wa
We can write P,(t) in the form

P = X, 008" + 2205 0.0 L (01

(m") E Q.(2) i‘f— (@) + -

(83) _ (1 n pf?' 1y (,,2,,',) qu )(Z_ 0.0 q,.)
~(+a e @Iy V-0 -0 £ roec)

=1—101—(¢g+pp)l "Z_:l F.(t)(g + pp)™ .

Hence we have the following theorem.
THEOREM 8.1. With the same assumptums on F(t) and p. as ¢n Theorem 5.1,
in the actual counter,

(84) Pu(t) ~ [e/(adp) ™77, t— .

9. Asymptotic behavior of », in the actual counter. By using the same method
as the one used by Takécs in [9], we can deduce that for the actual counter,

©O1) (s = r(s) [;z—s) - %ﬂ{s [P0 dt}—l]

where 7'(s) = (pr(s))/(1 — gr(s)), is the Laplace Transform of
Kt g = (1 -9 X F\™
which can be verified to be a distribution. It can also be seen that

jz_::) Q;(t) =1- Km+1(t7 q)
where K,.41(t, ¢) is the (m + 1)th convolution of K (¢, ¢) with itself. Taking
F(t) and p, as in Theorem 5.1, with @« = g and a\p > gc, we find that
(9.2) 7(s) ~ 1 — [(edp — gc)/(ap)IT(1 — a)s”.

Hence we have the following theorem.
THEOREM 9.1. With the same assumptions on F(t) and p. as in Theorem 6.1,
with a = B and Aap > gc, in the actual counter,

. Vi =
08t | e = S 7] - 0@
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APPENDIX

Here we give a brief sketch of the proof leading to the results in 5.7. At the
outset we state a Lemma (the proof of which is fairly simple) which we use in
the proof of the accompanying theorem.

Lemma. Consider the integral

(1) I=[:¢"ﬂe““”"d¢, a>0, v>0, T > 0.
Ifg > 1, i
I = [(a«T)"™""/4]-[P(8 — 1)/v)] + Ki(T, 8)T),
Ifg <1,
I = Ky(T, s),
and if B =1,

I = (1/x)llog (1/T) + Ky(T, 8)],
where for all T in the range 0 < T < =,
KT, 8) < Ki(3), =1, 2, 3.

Note K;(3) depends only on & and not on T.
We now prove the following theorem concerning stable laws.
TurorEM. Consider a distribution function F(t) with Laplace transform

r(s) = exp {[—eT(1 — a)/als®}, ¢>0, 0<a<]l.
Then, F(1) can be put in the form 1 — F(t) = ¢ *[(c/a) + €(t)] where
é(t) é [K;t—a2/(l—a) + K;t—a(l'f't!)/(l—a) + th—a/(l—a) + Kit—a +
th—a(Z—a)/ (1--1!)]
» where a > % or o < %, and
(3) e(t) < [KitH 4+ Ko + K5t + KY (log t)17"]
when o = 3-Ki;and K7, ¢ = 1,2, 3 - - - are positive constants independent of t.
Proor. In [6] Mikusifisky has shown that
g(t) = (1/2x1) _[ e ds, O<t<w;0<a<l)
(4) .
= (mla/(1 = @)l(1/0) [ ue™ do,

where
u = £ % (sin ag/sin ¢)* " [sin [(1 — a)¢]/sin ¢}-
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Put T = % gothat t = T ""'* and
(sin a¢)® " (sin {(1 — a)g})
(sin ¢) 10—

so that w = Tui(). v1(¢) and »1(¢) are continuous and bounded in [0, 7/2] and
v1(¢) > 0 in [0, x/2].
Let

n(¢) =

va(¢) = ni(r — ¢) = ¢ " w(g).

w(¢) and w’(¢) are bounded and continuous in [0, 7/2] and w(¢) > 0 in [0, =/2].
Let G(t) = [q ue “d¢ so that g(t) = {a/[r(1 — a)t]}G(2).
We write G(1) = G1(1) + G,(t) where

/2 .
Gt) = T [ (@)™ dg.
0
Using the inequality 0 < 1 — ¢ ® < z, x > 0, we have
/2
@) =T [ [ o) s + K4(T)T:|

= T[A + K«(T)T]
where A = [7"”v:(¢)dp and |Ky(T)| < A’forall Tin0 < T < o, A and 4’
being constants independent of 7', and

/2
Gu(t) = T [o 1a($)e ™ d.

In the following analysis we use frequently functions of the form K;(T, §),
Ai(T, 8)7 B:,,(T, 6)) Ci(t7 8); C:(ty 8); Ci,(ty 6)7 Di(t7 6)) D;(tf 8)7 D:'(ty 8); T =
1,2,3 --- . These functions which depend upon T (or t) and & have the property
that their absolute value will be less than a constant which is independent of T'
(or t), but may depend upon é for all values of T'(or¢) in 0 < ¢ (or T') < o,

We now write Go(t) = G3(t) + Gi(t) where

/2
Gs(t) = be ¢ VI Dyy(g) g™ T TV gy
= Ks(T, )T,

and
8 —1/(1—
Gult) = T [ 6710 Pu(g)e™™# ™47 gy,
0
We now write G4(t) = Gs(t) + Ge(t) + G:(t) where
)
Gs(t) = Tf ¢ MO p(0) g TETH TV gy
0
(1 — &)[Tw(0)I"*[T'(a) + Ko(T, $)T]

5
Tw(o)f [¢—l/(l—-a)e—1'¢ 1a ")w(o)][e—ﬂ'cb L (1=a)(w(¢)~wl)} __ 1] do.
0

Gy(2)
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Using the inequality |1 — ¢7%| < ze'™, £ > 0 we get
s
| Go(t) | = K(T, )T [ g 0106707 gy,
0

Here a can be equal to w(0)/2 and § is chosen such that in the interval 0 < ¢ < §,
[w(o) — K¢] = w(0)/2,

K being the lowest upper bound of |w'(¢)|in0 < ¢ < /2.
Using the Lemma we have

| Go(2) | = [Ks(T, 8) + Ko(T, 8)TIT*
G() = T [ 00 () 70740 g
0 -
where w,(¢) = [w(¢) — w(0)]/¢ is bounded. So
' ]
G:(t) = Ku(T, 8T f i T TH AT gy
0

where ¢’ is the L.U.B of w(s) in [0, =/2], which is positive. Hence

Ku(T, 8)T*** + Kyw(T, 8)T" if1/(1 —a) >20ra > %
Gi(t) =< Ku(T,8)T if1/(1 —a) <2o0ra < i}
Ku(T, 8)Tllog (1/T) + Kui(T, 8)] if1/(1 —a) =2o0ra = 1.

Collecting the various terms we can express G(¢) in the form
Q) = (1 — a)T(a)[w(o)T]™* + Ai(T, 8)T + As(T, 6)T*+
(5) As(T, ) TP + Ay(T, 8)T*** + As(T, 8)T* %,

fa>% or a<i

and
@ ‘O BHTG ()T + Bu(T, 8)T + By(T, 8)T" + By(T, $)T* +
By(T, 8)T log (1/T), if & = 3.
That is
G@t) = (1 — a)T(a)[w(o)]™ ™ + Ci(t, 8)t /¢
Q) Cat, 8)E29® . Cy(t, §)¢ 2@ 0=
Ca(t, 8) @72 =D (2, 5)¢ P ifas i
And
8) G(t) = (V7/2)lw(0)I't + Da(t, 8)t + Du(t, 8)" +

o

Dy(t, 8)t™F + Du(t, 8)(log t) /1 ifa=
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So
g(t) = (a/m)t * w(0)[*T(a) + Ci(t, 8)t74 4
(9) C(t, S)E™ A+ U= 4 oy 5)plet—aDiG—a)
C:’;(t 6)t(2a2—-a—l)l(l—a) + C;(t 8)t(2a2_2a—1)l(1_a)

where
Ci(t, 8) = (a/lx(1 — a)])Ci(t, 8),
and
0y Y@= 3vVmw(o)l't™ 4 Di(t, 8)i* + Di(t, 8)™
+ Di(t, )t + Di(t, 8)t 2 log ¢
where ‘

| Di(t, 8) = (1/m)Di(t, 8)
If ¢ is the Laplace transform of ¢(¢), then

o(t) = (1/2a0) [ e g

—ta

The frequency function whose Laplace transform is e ™" is given by

(11) f(t) = (1/m"'*)g(t/m"'*)

In our case for the distribution considered in (5) m = [cT'(1 — a)}/e.

We first consider the case when a < 3 or > £, (0 < &« < 1). Using (9) and

(11) f(t) can be put in the form
f@) ="+ Ci (e, 8V +
(12) C;,(t 8)t—(l+a)/(l—a) + C:,;,(t 5)t(a2_a_l)/(l—a)
Ci’(t s)t@az—a—l)/(l—a) + C;’;’(t 5)t(2a.2—2a—l)/(l—a)
Now
1= F@) = [ f)
t
Using (12), after integration, F(¢) can be put in the form
(13) 1 —F@) = (¢/a)t™™ + t%(2)

where

(14> €(t) < K;t—oﬂl(l——a) + K;t—a(l+a)/(1—a) + K;t—al(l—a) +

where K; are constants independent of ¢ for 0 < ¢ < .

— ] — o -
Kit a + Kat a—a)/(1—a)
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In the same manner, where & = 3, using (10) and (11), f(¢) can be put in the
form

F(O) = a7 + DI, 8)C + DI, 8)* + DIt o)t~ +
DY (t, 8) log t — (%) log m]
Using (15), after integration, F(¢) can be put in the form
1 — F(t) = 2a™F + t7He(t)

(15)

where
(16) e(t) < Kit?H 4+ Kt + Kit™ + K (log 1)/t

where K7, % = 1, 2, 3, 4 are constants independent of  in 0 < ¢ < «. Hence
the theorem.
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