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l.llntroduction and summary. We shall consider the problem of estimating a
linear functional relationship

(1.1) 4 a+‘317-1+...+6p7_1’=0

among p variables 7, - - - , 7% when the observed values do not satisfy it because
all of them are subject to errors or fluctuations (superscripts will, in general, be
indexing symbols, not powers, in this paper). Geometrically, the problem is
equivalent to fitting straight lines or planes to a series of ¢ observed points when
all the coordinates are subject to error. This problem has a long history. R. J.
Adcock, in two papers written in 1877 [2] and 1878 [3], solves it by minimizing
the sum of squares of the orthogonal distances from the points to the hyperplane
(1.1). Adcock and many other authors used the model

(12) yz=7'z+ez (7'=1;)Q)’

where y; and 7, are column vectors representing the observed and true points,
and the errors e; are independent random vectors with mean value zero. Since
the 7; are points lying on the hyperplane (1.1), we have in matrix notation

(1.3) a—+ Br; = t=1-",9

where 8 is a row vector with components 81, -+, 8 . If we assume that the
7; are independently drawn from a probability distribution, then the estimate of
8 obtained by Adcock is not consistent. In fact, in 1937, J. Neyman [21] pointed
out that if the distribution of the true vectors r; and the errors e; is normal, then
the distribution of the observed vectors y; is also normal and, being determined
by moments of the first two orders, it is not sufficient to determine the parameters
« and B3; the functional relationship (1.1) is, therefore, nonidentifiable. Several
methods have been proposed to overcome this difficulty, for which the reader is
referred to a recent general survey of the literature by A. Madansky [18], which
also contains an extensive bibliography. One approach is to assume that we know
the covariance matrix of the errors up to a numerical factor. As was shown, in
general, by C. F. Gauss [8], [9], in the case of independently and normally dis-
tributed observations whose variances are known up to a numerical factor, the
maximum likelihood estimate is simply the weighted least-squares estimate. This
estimate of the linear functional relationship was obtained as early as 1879
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by C. H. Kummell [15], for the case in which the components €; of the vectors
e: are independently distributed with variances x”oy, , where the x** are known
constants and the o4 are known only up to a numerical factor. Kummell found
that his estimate coincides with the estimate proposed by Adcock only in the
case in which all the variances are equal.

M. J. van Uven [24] considered the case in which the errors e; are independent
and have the same multivariate normal distribution with a covariance matrix
2 which is known only up to a numerical factor. His method is essentially the
following. He considers 7', - -+, 7° as skew coordinates in a new, “isotropic’
space in which the rectilinear orthogonal coordinates are independent and have
the same variance. In the new space he then uses Adcock’s principle of adjust-
ment, namely, he chooses as the estimate the hyperplane which minimizes the
sum of orthogonal distances. Later, T. Koopmans [14] showed that van Uven’s
estimate is the maximum likelihood estimate for the case considered. If the 7,
are assumed independently drawn from a probability distribution, the estimate
of the linear functional relationship thus obtained is consistent, but the estimate
of = converges in probability to p~'Z (see also [16]). B. M. Dent [7] solved the
maximum likelihood equations in the case in which Z is not known, but, as was
shown later by D. V. Lindley [16], her estimates are not consistent, and
should, therefore, be rejected. More recently, J. Kiefer and J. Wolfowitz [13]
showed that, under certain conditions of identifiability, when the 7; havea prob-
ability distribution, the method of maximum likelihood, if properly applied,
yields consistent estimates of both the linear functional relationship and the
probability distribution of the 7;. However, Kiefer and Wolfowitz do not give
explicit expressions for the maximum likelihood estimates.

No difficulties with respect to the identifiability of the functional relationship
or with respect to the consistency of the estimates arise if we can replicate the
observations. The model is now, in matrix notation,

(1.4) Yis = Ti + €.

In general we have n; observed points for each of the true points 7;, and it is
assumed that not all the 7; lie on a translated subspace of dimension smaller
than p — 1. Obviously this implies that ¢ = p. This model has been considered
previously by G. W. Housner and J. F. Brennan [12], J. W. Tukey [23] and by
F. S. Acton [1] (see also [11] and [25]). If we assume that the errors e;; are inde-
pendently and normally distributed with a known covariance matrix =, we lose
nothing if we consider only the averages y;. = n7')_;y:; . We have then the
same model (1.2), with the only difference that y, isreplaced by .. . If, however,
the covariance matrix is not known, we can now obtain in the usual way an
estimate S of Z. F. S. Acton [1] suggested the use of S instead of = in the estimate
obtained by the method of maximum likelihood in the case of known Z. In this
paper it will be shown that the estimate thus obtained is the maximum likelihood
estimate when Z is unknown.
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If the design is a (in general incomplete) block design, we have, if the treat-
ment ¢ is applied on the block 7,
(1.5) Yis = i + b; + €,
where b; is a column vector representing the block effect. Considering the block
effects b; as unknown constants, we get in the usual way the intrablock estimates
t; of the treatment effects ;. Then, the same equation (1.2) still holds if y; is
replaced by ¢;, but in general the errors ¢; and consequently also the estimates
t; will no longer be independent. If the design consists of r replications of a basic
design, then the covariance of two errors ¢;, ¢ will be given by

.
i)

(1.6) cov (e,er) =

where x**" are known coefficients and the matrix = is unknown.

In this paper maximum likelihood estimates for = and the parameters of the
linear functional relationship will be found for the case in which (1.6) holds. It
will be shown that the maximum likelihood estimates &, § in the case of un-
known = are obtained from the corresponding estimates in the case of known =
by simply replacing = by the linear regression estimate S. In the last Section it
will be shown that if the maximum likelihood method is applied directly to the
variables y;; instead of the variables #; and S, then the same estimate 3 is ob-
tained, but the estimate of = is multiplied by 1 — k™ + N, where k is the
number of experimental units in each block and N is the total number of ex-
perimental units. All of the estimates obtained are consistent, with the excep-
tion only of the estimate of Z obtained by the direct approach in the last
Section, which converges to (1 — k™)=.

2. The model. We shall consider now in more detail the intrablock analysis
of a (in general incomplete) block design to which the additive model (1.5)
applies. We shall assume that errors coming from different experimental units
are independent, and that the errors coming from a single experimental unit
have a multivariate normal distribution with zero means and covariance matrix
2 = {om}. Therefore, ;

(2.1) cov (e, €h) = om
where €}j(h = 1, -+, p) are the components of e; . If we do not consider the
linear functional relationship (1.1), the estimation of r; and 2 is simply a linear
regression problem. In order to arrive at a unique solution ¢, -« , £, it is
usual to add some arbitrary linear restriction, say,
(22) Z w,-t,- = 0, Z (O = O

7 7

where «* are known coefficients and the matrix = is unknown.

It is known ([5] Section 8.2) that the linear regression estimates ¢; are linear
combinations of the observed vectors y;; . If the design consists of r replications
of a basic design, then the covariance of two estimates ¢;, f;» is given by (1.6),
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where the ™" are known coefficients that depend on the bagsic design and the linear
restriction (2.2). Since the errors are assumed to be normally distributed, it
follows that the ¢; have a multivariate distribution with means r; and covariances
given by (1.6). Finally, the linear regression estimate of o is

(2.3) S = - Z' e ek

where v = N — ¢ — b + 1, b is the number of blocks, ¢}; is the linear regression
estimate of the error ¢!;, and the prlme over the summation sign indicates that
the sum must be extended over all pairs (7, j) such that treatment ¢ appears on
block j. It is known ([5], Section 8.2) that the estimated covariance matrix
= {sw} is independent of the ¢; and has a Wishart distribution with mean
value 2 and » degrees of freedom.
We have then the following hnear functional relatlonshlp model. The p-dimen-

sional random variables ¢, , - - - , {, have a multivariate normal distribution, with
means 7, -+, 74 that satisfy (1.3) and covariances

i/
(24) cov (&, t) = KT z

where r and the «**" are known coefficients, and 2 is unknown. The matrix § is
an unbiased estimate of =, is independent of the ¢; and has a Wishart distribution
with a number of degrees of freedom » which tends to infinity when r —
the quotient r/» convérging to a positive limit.

The matrix K = {«**} is always nonnegative because, for a given &, r oK
is the covariance matrix of the hth components &i, -« - , th of #;, « - -, to. If the
t; are not subject to any linear restriction like (2.2), then for any A the distri-
bution of # , - -+, t is of rank ¢ (see for example [6], p. 297) and the matrix K
is positive definite. If there is only one linear restriction (2.2), the matrix K is
of rank ¢ — 1 and

(2.5) Ko = 0,

where w is the column vectors the components of which are w; , -+« , wg (see for
instance [17]).

3. Covariance matrix known. We shall consider in the first place the case in
which. the covariance matrix Z is a known positive definite matrix and the ¢;
are not subject to any lmear restriction (and consequently K is a positive definite
matrix).

From (2.4) it follows that the covariance matrix of all the variables s
K ® Z, where the symbol ® denotes the Kronecker product of two matrices.
The determinant of this covariance matrix is » "!|K|?|Z|%. Therefore the prob-
ability density function for ¢ , - - - , £ is, up to a numerical factor, equal to

(3.1) K[|z,
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where, if K™' = {xiir},
Q= ‘z‘.;"ii’(ti — 7)'2 7 (b — Tir).
We shall denote the trace of a matrix X by tr X. Then, in matrix notation,
(3.2) Q =tr=7'(t — 1)K'(t — 1),
where ¢ is the p X ¢ matrix the ¢th column of which is ¢;, and similarly, = is
the p X ¢ matrix the ¢th column of which is 7, . The maximum likelihood esti-

mates of a, 8 and  are the values &, # and # that minimize (3.2) subject to the
conditions (1.3) which may be written

(3.3) au + Br = 0,

where u is the row vector the ¢ components of which are équal to 1. This problem
was solved by Koopmans [14] for the particular case K = I. In what follows,
unless otherwise specified, the symbols «, 8 and 7 will denote mathematical
variables (not true values or true parameters). In the first place we shall find the
minimum of (3.2) subject to the condition (3.3), for given values of « and 8.
Since Z and K are positive definite, uniquely defined positive square roots =
and K* exist (see [10], p. 166). Consider the change of variable

(3.4) 8 =3t — nKL
Since tr XY = tr YX, (3.2) may be written, if §; is the sth column of §,
(3.5) Q = tros’ = 3 83,

that is, Q is the sum of the squares of the distances from the origin to the points
8;. The condition (3.3) is, in the new variables,

(3.6) vi — =%, =0, G=1,--,q)

where v, is the ¢th component of (au + Bt)K_}. We have to minimize the sum
of squares of the distances from the origin to the points é; , subject to the condi-
tion that each &; lies on the corresponding hyperplane (3.6). Note that these
are, in general, ¢ parallel hyperplanes. This was the principle from which M. J.
van Uven [24] derived his estimates for the case K = I. Obviously, the minimum
is reached when §; is on the perpendicular from the origin to the hyperplane
(3.6) and, therefore,

2} /
Bzg""

Going back to the old variables, we have

0; =i

a

_a 2B s
(3.7) L= = g (du o+ ).
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By substitution of (3.7) into (3.2) it follows that the minimum value of @, for
given values of a and B, is

(au + BOK *(au + Bt)’
8z’ :

We shall now find the minimum value of @, for a given 8. By differentiation we
have (au 4 Bt)K '’ = 0. If we set

(38) Q=

K/
YT R

andt. = tw = D taw,;, where w; , -+ , w, are the components of w, we get
(3.9) &= —pt..

Since @ tends to 4« when a — o= », it follows that the value & given by (3.9)
minimizes Q; . From the definition of w we have uw = Y w; = 1, so that if, as
happens with the usual matrices, K, the w; are nonnegative, then ¢. is a weighted
average of the vectors ¢, , with weights, w; . If we write At; = ¢, — ¢. and At =
t — t.u, we have at the minimum au + B8t = BAt, and, therefore, the minimum
value of @, is '

0, = BF8
(3.10) Q. o
where
(3.11) F = AK'(At)

is a nonnegative matrix.
We now have to find the vector 3 which minimizes @, . Consider the change of
variable 8 = uZ . Substituting into (3.10)
w7

(3.12) Q:

The vector fi which minimizes this expression is obviously any proper vector
of the smallest proper value of the nonnegative matrix E*FE""; that is, i is
given by

AG(ZTF — A =0,
where A is the smallest root of the equation,
|z 2 — 1| = 0.

In computations the following equivalent equations may be preferred. The
maximum likelihood estimate of 3 is given by the equation

(3.13) B(F —2) =0,
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where \ is the smallest root of
(3.14) |F —AZ| = 0.

4. Covariance matrix unknown. We assume now that the covariance matrix
2 is unknown, but that we have an estimate S which is independent of ¢ and has
a Wishart distribution with mean value Z and » degrees of freedom, the prob-
ability density of which is proportional to

(4.1) 1278} *™ exp —3» tr 278

for S positive definite and 0 otherwise, where S = {s;/}. It is assumed, as before,
that 2 is positive definite, and that the ¢; are not subject to any linear restriction
(and, therefore, K is positive definite). We shall consider only the case, which
happens with probability 1, in which § is positive definite.

The joint probability density of all of the variables ¢ , sy is proportional to
the product of (3.1) and (4.1). The maximum likelihood estimates are the
values #, &, § and £ that maximize

(4.2) |27 exp —1 tr 278 + r(t — KNt — 7))
subject to the condition (3.3). Instead of maximizing (4.2) we can minimize
(4.3) tr 278 + r(t — P)KN(t — 7)1 — (¢ + ») log |27V

We may in the first place keep «, 8 and r fixed and find the value of = which
minimizes (4.3). By the Lemma 3.2.2 of Anderson’s book [4] the maximum
likelihood estimate of Z is

(44) $=(qg+ »)' S + r(t — AK(t — #)]

where # is the maximum likelihood estimate of = (based on maximum likelihood
estimates of « and 8 and the restraint (3.3)). Substituting this estimate of = (as
a function of &, 8, #) into (4.3) we see that &, 8, # must minimize

(4.5) |»S + r(t — 7)K'(t — 1)’

subject to the aforementioned restraint. Consider the change of variable

(4.6) 8 =8t - nK?

We have then to minimize

(4.7) |vI + 788’

subject to the following conditions, similar to (3.5),

(4.8) vi— B8 =0 (t=1,---,9),

where, as in Section 3, v, is the sth component of (au + 8t)K* and &; is the ¢th
column of 8. We shall find in the first place the minimum of (4.7) for fixed values
of a and B. The expression (4.7) may be written

¥ + Dpp*r + D + o + Dp?
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where D, is the sum of all the principal minors of order % of the matrix §6’. The
elements of the matrix 68’ are the product-moments with respect to the origin
of the system of points 8;, and consequently all the principal minors of 88, and
a fortiori all the coefficients D;, are non-negative. In particular,

(4.9) Dy = tros’ = 3 86

is the sum of the squares of the distances from the origin to the points §; . This
is a minimum when all the points §; are on the perpendicular from the origin to
the hyperplanes (4.8). Since these points are on a straight line which goes through
the origin, it is easily seen that at these points all of the principal minors of
88’ of order 22, and consequently, also D, ---, D,, vanish simultaneously.
Therefore, minimizing (4.7) is equivalent to minimizing (4.9) subject to the
conditions (4.8). The same problem was solved in Section 3, with the only dif-
ference that we now have S instead of =. Therefore, the maximum likelihood
estimate of B is given by the equation

(4.10) B(F —18) =0
where [ is the smallest root of
(4.11) |F — 18] = 0.

Equivalently, 8 = %S, where # is any proper vector of the minimum proper
value [ of the nonnegative matrix StFS™. The maximum likelihood estimate of
a is given by the same equation (3.9) as before, the maximum likelihood estimate
of 7is

«_, _ SBBAt
(4.12) P=t- g
and the maximum likelihood estimate of 2 is given by (4.4), or, equivalently, by
Sﬁ’BS)
413 S 4 1l =) -
(413) T + ( + BSE

6. Consistency. When the number r of replications tends to infinity, S con-
verges in probability to = and F converges in probability to ® = ArK (A7)’
where Ar = 7 — r.uand 7. = rw. The direction of the true vector 8 is the only
direction orthogonal to all the vectors A7; = 7; — 7., because all points r; lie
on the hyperplane (1.1) but do not lie on any translated subspace of smaller
dimension. Consequently, up to an arbitrary factor, the true vector 8 is the only
vector such that A7 = 0, and, since K™ is a positive definite matrix, it is also
the only vector such that 88’ = 0. But, since ® is a nonnegative matrix, 8 is
the only vector (up to an arbitrary factor) such that & = 0. Let u be defined
by 8 = u="}. Then u is the only vector (up to an arbitrary factor) such that
yZ‘*@Z“* = (. Therefore, the matrix =~ oz is singular, the smallest proper
value is 0, and its only proper vector is u. Since the proper vector is a continuous
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function of the matrix, 7 converges in probability’ to x and consequently 3
converges in probability to 8 (up to an arbitrary factor). Since SA¢ converges in
probability to BAr = 0, it follows from (4.12) that # converges in probability
to the true matrix r. It follows then easily from (3.9) that & converges to « and
from (4.4) that £ converges to = (since by assumption, the quotient r/» con-
verges to a positive limit).

6. Homogeneous linear functional relationship. We assume as before that
there is no linear restriction (2.2), and, therefore, K is positive definite. If it is
known that a = 0, the equation (3.8) may be written simply

_ BB
(6.1) Q= A
Instead of defining F by (3.11) we shall define F by
(6.2) F = K'Y,
and we have
_ BFg’
(63) Ql - ﬁb‘i )

which is similar to (3.10). We can then proceed by the same method that was
employed in Section 3. The results and formulae obtained there and in Section 4
will also apply to the homogeneous linear functional relationship case, provided
that it is understood that F is given by (6.2) and not by (3.11).

7. Linear restrictions. We shall now assume that the #; are subject to a known
single linear restriction (2.2). In matrix notation

(7.1) tw = 0.
In this section we shall assume that the coefficients w; are normalized so that
(7.2) uw = 1.

Since ¢ is assumed to verify (7.1), it follows that it is impossible that ¢ = w.
It follows also that we have

(7.3) T = 0.

If we multiply (3.3) on the right by « we obtain, by (7.2) and (7.3),
(7.4) a=0.

By (3.3) we have then‘
(7.5) Br = 0.

1 Because, if the vector valued function f is continuous at the point a, and if the random
vector z converges in probability to a, then f(z) converges in probability to f(a). This result
follows as a special case (yx constant) from Corollary 2 of [20]. (See also Lemma V of [19]).
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Since there is only one linear restriction (2.2), the matrix K is of rank ¢ — 1,
as was pointed out in Section 2, and consequently, the previous theory cannot
be applied directly in this case. Let L = {L;;;} be a nonsingular ¢ X ¢ matrix
whose last column is the vector w, 7.e.,

(76) Liq = w; (7/ =1,---, Q)’
and such that all other columns have a sum equal to zero, 7.e.,
(7.7) 2L =0 (i=1,---,¢—1).

Consider the new variables
(7.8) = L.

By (2.2) and (7.6)
(7.9) ty" =0 (h=1,---,p).

If we denote by t* the p X (¢ — 1) matrix the elements of which are the i
with ¢ ¢, and by 7* and 71" the corresponding true values, we have in matrix
notation

(7.10) (t*|0) = ¢L, (#*|0) = 7L.
Therefore, if we multiply (7.5) on the right by L, we obtain
(7.11) gr* = 0.

Consequently, the new variables 71"(7 # q) satisfy an homogeneous linear func-
tional relationship with the same parameter 8. It can be easily seen that the
covariance matrix of the pg variables £;" is ¥ 'L’KL ® 2. From (2.5) and (7.6) it
follows that

ey _ (K* 0
(7.12) LKL_(O 0,

where K* is a (¢ — 1) X (¢ — 1) matrix. Since L is nonsingular, and K has
rank ¢ — 1, it follows that L'KL has also rank ¢ — 1 and, therefore, K* is non-
singular. Since #'K* ® Z is the covariance matrix of the p(¢ — 1) variables
(¢ # q), in order to find the maximum likelihood estimates, in the case of
unknown Z, we have to minimize

(7.13)  tr T8 + r(t* — MKFU(F — )] — (¢ + »)log |27

subject to the only restriction (7.11). This is an homogeneous linear functional-
relationship probléem of the type discussed in the previous section. Therefore,
the maximum likelihood estimates 8, £ are given by (4.10) and (4.13), where !
is, as before, the smallest root of (4.11) and F is given by

(7.14) F = t*K*'t*.
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We shall now show that we also have
(7.15) F = (K + xo'v)”'t,

where o is an arbitrary number different from zero. From (7.12) and (7.7) it
follows that ,

*
(7.16) (K + ko' W)L = (13 ,0) ,
Ko,
and, consequently, K + kou'u is nonsingular. Moreover, the right-hand member of
(7.15) is equal to

tLIL' (K + xq'w)L]"'L'¢

and, therefore, by (7.10) and (7.16) is equal to the right-hand member of (7.14).
In practical applications the expression (7.15) will be used with preference to
(7.14). Moreover, in the case of balanced designs, all of the elements that are
not in the diagonal of K will have a common value k' > 0. By choosing ko = —«/,
the matrix K + «u'u is a diagonal matrix and, consequently, the computations
are considerably simplified.

A similar argument shows that the maximum likelihood estimates are also
the values that minimize :

(7.17) trZ7'WwS +r(t — 7)(K+ xou’u)‘i(t — 1)1 — (¢+ »)log |=7
subject to the conditions (7.3) and (7.5).

8. Intrablock analysis: direct approach. We shall now estimate the linear
functional relationship by applying directly the maximum likelihood method to
the model (1.5), considering the coefficients b; as unknown constant vectors
(intrablock analysis). In order to arrive at a unique solution # we add as usual
the linear restriction (2.2). It follows then, as was shown in the previous section,
that-a = 0. As was already mentioned in Section 2, we assume that the errors
coming from different experimental units are independent, and that the errors
coming from a single experimental unit have a multivariate normal distribution
with zero means and covariance matrix 2. If there are N experimental units,
then the probability density for all pN variables y.: is proportional to

(8.1) 12 exp —4 > o™ Quw
hh'
where
’
(8.2) Qi = Z e:je',f,- .
¥

The maximum likelihood estimates are the values that maximize (8.1) subject
to the conditions (1.3) and (2.2), or, equivalently, the conditions (7.3) and
(7.5). Let y*; , t*; and 7*; denote the average of yields, estimated and true treat-
ment effects for the Ath variable over all experimental units of block j. Define
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the adjusted yields and adjusted treatment effects by

~h h h

b h h _
— b, Tij = Ti — T.j,

Gii=vii—v, Bi=10
where 7} is the Ath component of 7i.

It can be easily shown that, if #} is the maxnnum hkehhood estlmate of 7%,
then the maximum likelihood estimate of b} is b = 3*; — #*; , where #*; denotes
the average of the #} for all treatments occurring in block j. By substitution into
(8.1) and (8.2) it follows that the maximum likelihood estimates 8, #, £ are the
values that maximize, subject to the conditions (7.3) and (7.5) the expression

(8.3) = exp —%’Z ™ Qv
Y
where
’
(8.4.) Ql,zh' = Z (27':: - Tz:)(yu - 71’::')-
k1Y)

Suppose that we have numbered serially the N experimental units, and let
g’,‘. , 7+, 1 denote the adjusted yield, and the adjusted treatment effects (true
and estimated) for the nth experimental unit and the Ath characteristic being
measured. If §*, 7, #* denote the row vectors the N components of which are the
correspondmg experlmental unit values, we have

(85) Ql’zh' — (g" - ;h)(gh’ _ ;h'),.
From the definition of #* it follows that
(8'6) ’Fh = Z 051’: ’ = Z Cit’; ’

where the ¢; are row vectors that depend only on the experimental design. Since
the ¢* are the values that minimize Qs subject to the only conditions

(8.7) 2owidi =0 (h=1,---,p)
by differentiation with respect to 7; we have, if A is a Lagrange multiplier,
c,-(@’]" —_ ih)' + )\w,’ = 0.

If we multiply this expression by ¢ and add for ¢ = 1, --- , ¢ we have by (8.6)
and (8.7)

(8.8) Mg - =o.
If we multiply instead by 7; we have
(8.9) A -1 =o.

By (8.8) and (8.9) it follows then from (8.5) that
Quw =@ - @ - )+ @ -HHE -
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and by (2.3)
(8.10) Q= s + (I — ?h)(ih’ — i-'h’)'.

Let \;:» be the number of blocks where both treatments ¢ and ¢’ are applied (and
consequently N\;; will be the number of replications of the treatment 7). Let A =
{X:} and let A; be the diagonal matrix whose diagonal is A1, - - - , Agq - Assume
that all blocks contain k experimental units and define the matrix K = {&;} by

(8.11) K=ww'+%<Ad—%>.
It can be easily shown that
@ = =) =13 (e — ww) (& — HE - ).
Therefore, in matrix notation we have, by (7.1) and (7.3),
(8.12) by Q= tr =S + 7(t — R — 7).

Let ¥ be the matrix of the adjusted total yields ¥ = > #;. It can'be shown
that (see.for instance [4], p. 251) ¥ = t(Ay — A/k). Then, by (8.11),

(8.13) Y = n(K — wo').
We shall show that the system of equations (7.1) and (8.13) is equivalent to
(8.14) nk =Y.

It is obvious that (8.14) is a consequence of (7.1) and (8.13). From the defini-
tions of A 'and ¥ it follows that Au’ = kAqu’ and Yu’' = 0. By (8.11) we have then

(8.15) Ru' = wuw.

Therefore, if we multiply (8.14) on the right by u’,.we obtain the equation
(7.1). From (7.1) and (8.14) the equation (8.13) follows immediately. We as-
sume now that the design of the experiment is such that the system of equations
(7.1) and (8.13) has a unique solution, {. Then it follows that (8.14) has a
unique solution, and, therefore, that K is nonsingular. If K™ = {z*"} is the in-
verse matrix, then

and, therefore,

1 s
cov (&,8) = ;2278’ 7 cov (Y, Yh).
3’

It can be shown that

cov (Y2, Yh) = (& — wj w7 ) o
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and, therefore, (1.6) holds, with
=R = () (2R ).
Fi i’

In matrix notation K = K~ — K 'w(K'w)’ and by (8.15)
(8.16) K™ = K + «xou'u,

where ko = (uw) ™" is an arbitrary positive number. By substitution into (8.12)
we have

h; " Qu = tr =8 + r(t — 7)(K + xkot'u) "t — 7))

To maximize (8.3) subject to the conditions (7.3) and (7.5) is then equivalent
to minimize .

(8.17)  tr =S + r(t — 7)(K + k'u) " (t — 7)'] — N log |=7|

subject to the same conditions. But in Section 7 the same problem was solved,
with the only difference being that we now have N insteadof ¢ +v =N — b + 1,
where b is the number of blocks. The estimate § is, therefore, the same as before,
but instead of (4.13) we have now

(8.18) $ = & 1vS + rLISFBS/BSH).

This expression is equal to the estimate (4.13) multiplied by 1 — Kt 4+ N\
Therefore, since (4.13) converges in probability to the true value Z, the estimate
(8.18) converges in probability to (1 — k'), and consequently, it is incon-
sistent. This fact is explained by the existence in the model (1.5) of an indefinitely
increasing number of incidental parameters b; .

The same inconsistency is found in linear regression analysis, ¢.e., when we
drop the restriction (1.1). The maximum likelihood estimate of Z is then
(»/N)S. When r tends to infinity, »/N — 1 — k™" and, therefore, since S is a
consistent estimate of 2, it follows that the maximum likelihood estimate of Z in
linear regression converges also to (1 — k') =. Obviously, this happens also in
the ordinary univariate analysis of block designs, as was pointed out by J. Ney-
man and E. L. Scott ([22], Example 2) in the case of a block design with the same
treatment applied to all experimental units.
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