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Summary. The problem treated is that of predicting the reliability character-
istics of a complex system from data on individual components. A general model
for systems maintained over a period of time is proposed, based on the idea that
every system failure is induced by a component failure and corrected by the
replacement of a single component. Moreover, it is assumed that components
are sometimes replaced even when the system is operating correctly, in order
to prevent unscheduled interruptions in operation. The assumptions which
define the general model cover a number of different preventive maintenance
policies, among them the following:

(a) Block Changes: All components of a given type are replaced simultaneously,
at times determined by a renewal process.

(b) Individual Component Replacement on the Basis of Age: If a component
reaches some given age without failing, it is preventively replaced.

(¢) System Check-Outs: If a component is used only intermittently and it fails
while it is not being used, it does not induce a system failure until it is called
into use. At regular intervals, those components which have failed without in-
ducing system failure are located and replaced.

(d) Marginal Testing: At regular intervals, a test is conducted to locate those
components which are still operating satisfactorily but which are expected to
fail in the near future. All components located by this test are replaced.

It is assumed that preventive removals are regeneration points and that the
performance of a component may be described by a distribution function
F(z: y), the probability that a component is removed by time z, given that it
enters the system at y, where z and y are both measured from the time of the
last preventive removal. F(z: y) is the sum of A (x: y) and B(z: y), where A(x: y)
is the probability that the component is preventively removed by z and B(z: y)
is the probability that the component induces a system failure by z. The integral
equations which determine the following measures of system performance from
F(x: y), A(z: y), and B(z: y) are developed:

(1) the expected number of failures in a given time interval

(2) the expected number of preventive removals in a given time interval

(3) the reliability function; i.e., the probability of no failure in a given interval

following a given system age.

Results from Renewal Theory and the Theory of Regenerative Stochastic
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Processes, developed by W. L. Smith, are applied to the problem of exploring
the asymptotic behavior of these quantities.

Conditions sufficient for maintenance policies a, b, ¢, and d to meet the as-
sumptions of the general model are precisely formulated, and the analysis neces-
sary to derive F(x: y), A(z: y), and B(z: y) is carried out for each policy.

1. Introduction. In modern technology there is a pressing need for methods of
predicting the reliability characteristics of complex systems from data on indi-
vidual components. In general, the techniques that are currently available fail
to take into account adequately a number of important factors, such as the
change in component survival probability with age, the effects of preventive
maintenance procedures, and the effects of intermittent component usage.
The simplest and most common prediction model is based on the assumptions
that all components fail independently, that every component failure induces a
system failure, and that the distribution functions of time to component failure
are exponential. In this model, no preventive maintenance is considered. Under
these assumptions, the times between system failures are exponentially dis-
tributed with a mean equal to the inverse of the sum over all component positions
of the inverses of the mean times to component failure. A number of papers which
consider one or more modifications of this model appear in the literature. When
the assumption of exponentiality is eliminated, the times between failure in a
single component position are treated as a renewal process. The expected number
of failures and the survival probability for a given interval as a function of system
age, both exact and asymptotic values, are obtained by applying well-known
results in Renewal Theory. [6], [7], [8], [14], [15] Several authors have considered
the effects of removing components which survive to some predetermined age.
[4], [5], [17] However, no satisfactory model which includes the effects of marginal
testing or of intermittent component usage has, as yet, been devised.

In Section 2, the precise assumptions that define the general model proposed
in this paper are formulated and, in Section 3, the integral equations which
determine the significant measures of performance are developed. Section 4
discusses the application of asymptotic results from Renewal Theory and Smith’s
analysis of equilibrium and cumulative processes [13, 14] to yield the asymptotic
values of these performance measures. Then, in Section 5, it is demonstrated
that, with appropriate assumptions, systems subject to maintenance policies
a, b, ¢, and d are special cases of the general model.

2. Assumptions—General Model. In this section, the assumptions which
define the general model of a system are tabulated. In Section 5, it will be demon-
strated that the four maintenance policies mentioned in the summary meet
these assumptions.

(1) The system is an assemblage of a finite number of components which per-
forms some function.

(2) The components fail independently and permanently.

(3) The system operates continuously except for interruptions due to failures
and preventive maintenance procedures. All maintenance time is neglected.
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(4) When a system failure occurs, repair is effected by the replacement of one
failed component. This is termed a “failure removal.”

(5) Components may be replaced at times when no system failures occur. These
are termed ‘“‘preventive removals.” With probability one, only a finite number
of preventive removals occur in any finite interval.

(6) When a component is removed, it is replaced by a new one from the same
population.

(7) For each component position, the preventive removals are regeneration
points, i.e., if it is known that a preventive removal occurs at some time y, then
knowledge of failures or maintenance procedures at times less than y has no
predictive value. Associated with each component there is a distribution func-
tion F(z: y) of time of removal for a component which enters the system at v,
where z and y are both measured from the time of the last preventive removal
or, if no preventive removal has cccurred, from the initial use of the system.
(Assumption 5 justifies the term “last preventive removal.”)

(8) F(z: y) is the sum of A(z:y) and B(x: y), where A(x: y) is the probability
that the component is preventively removed by z and B(x: y) is the probability
that the component induces a system failure by z.

9) F(z: y), A(z: y), and B(z: y) have the following properties:

(a) F(z:y) =0 forz =y,
(b) lim, yow F(z:y) = 1,
(¢) There exists a constant a > 0, such that for any y,
a S limped(z:y) £ 1, 0Z=limeeB(z:y) <1 — a.

It is intuitively clear that Assumptions 1 through 6 are approximately valid
for many systems under a variety of maintenance policies. Assumptions 7, 8,
and 9 will be more fully justified in Section 5 where it is demonstrated that a
distribution function F(z: y) which has the required properties may be formu-
lated for each of the maintenance policies mentioned in the summary. Heuristi-
cally, we note that Assumption 7 implies that, whenever a preventive removal
occurs, the prediction of future behavior in that component position proceeds
exactly as if the system were new at the time of the preventive replacement.
When a failure removal oceurs, on the other hand, the time to the next main-
tenance procedure is, in general, different from the time between maintenance
points, so that a failure removal does not constitute a regeneration point and
F(z: y) is not necessarily equal to F(z — y: 0). Assumption 9 states that, with
probability one, a component is not removed immediately after it enters the
system, but that it will be removed at some time. Furthermore, the probability
that a component is preventively removed before it causes a system failure is
bounded away from zero, over all system entry time, y.

3. General analysis. Three significant measures of performance for systems
subject to preventive maintenance have been chosen, and the analysis necessary
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to predict these quantities from component data will now be developed. These
three measures are:

(1) the expected number of system failures as a function of time,

(2) the expected number of preventive removals of components of each type
as a function of time,

(3) the system reliability function, which is the probability of no system
failure in a given interval following a given system age.

Since we have assumed that to each system failure there corresponds one
failure removal (Assumption 4), the expected number of system failures is the
sum over all component positions of the expected number of failure removals.
Correspondingly, the expected number of preventive removals of a component
of a given type may be obtained by summing over all positions which contain
components of that type. Finally, because of the assumption of independence
(Assumption 2), the system reliability function is the product, over all component
positions, of the probabilities of no failure removals in a given interval following
a given system age. Thus, all three measures of system performance may be ob-
tained from elementary operations on the corresponding functions for all com-
ponent positions. The analysis that follows is therefore concerned with a single
component position, for which functions U,(t), Us(t), and R(t; 2) defined below
will be derived. In these definitions, it is assumed that time is measured from
the initial use of the system.

(1) Uy(t) = E{N,(t)}, where N,(¢) is the number of preventive removals in
the interval (0, ],

(2) Uys(t) = E{Ny(t)}, where N;(t) is the number of failure removals in the
interval (0, £,

(3) R(¢; ) is the probability of no failure removal in the interval (z, z + ).

Since it has been assumed that a preventive removal constitutes a regeneration
point, it is clear that the number of failures between preventive removals and the
time between preventive removals are two sequences of independent, identically
distributed random variables. In accordance with this line of reasoning, U,(t)
and U,(t) will be derived by the following sequence of operations:

(1) ®(¢), the expected number of successive failures in the interval (0, ¢] and
before the first preventive removal, will be expressed in terms of an integral
equation involving B(z: y).

(2) G(t), the distribution function of the time between preventive removals,
will be expressed in terms of ®(¢) and F(z: y).

(3) Up(t) is then the renewal function determined by G(t).

(4) Uy(2) will be expressed in terms of U,(t) and B(f).

Finally a method of obtaining R(¢; z) from functions previously defined will
be presented.

TrEOREM 3.1. The function ®(t) defined above is the unique solution of

(3.1) ®(t) = B(t:0) + '[ B(t: y) d®(y).



RELIABILITY UNDER PREVENTIVE MAINTENANCE 141

Moreover, the expected number of failures between preventive removals is finite, i.e.,
n=G@(w) < o,

Proor. Let B®(¢) be the probability of at least k failures in (0, t] and before
the first preventive removal. Then

t
B() = B(1:0) and B**(1) = [ B(t:y) dB®(y).
0
Furthermore,

mo=iBWo=Mnm+glﬁwwawwy

k=1
Since, by Assumption 9¢, B(t:y) < 1 — a < 1, for all ¢ and y,
BP(t) £1—6,BP(t) = (1 —a)B*™(t) = (1 — a)¥,

and therefore ®(¢f) = (1 — )/« for all ¢. Since ®(¢) is non-decreasing and
bounded, the theorem follows.
THEOREM 3.2.

(32) 6) = F(:0) — [ 1 = F(t: ) ds(w),

and G(») = 1,1.e., G(t) is a proper distribution function.

Proor: G(t) is the probability that the component which enters the system at
0 is preventively removed in the interval (0, ¢] plus the probability that one or
more failures occur in (0, ] and some replacement is preventively removed at or
before ¢. Thus, G(t) = A(t:0) + [¢ A(t:y) d®(y). Upon substituting 4 (¢:y) =
F(t:y) — B(t:y) and using (3.1) one obtains (3.2).

To prove that G is a proper distribution function, we note that F(«~:0) = 1
and lim.., [o [l — F(¢: y)]d®(y) = 0. This is a consequence of the Lebesque
Dominated Convergence Theorem since B(®) < o by Theorem 1 and
1 — F(»:y) = 0for all y by Assumption 9b.

TrEOREM 3.3. U,(t) 1s the renewal function associated with G(t), and so satisfies

(3.3) U,(t) = G(t) + fo ULt — 1) d6(r).

This is the well-known renewal equation and no proof is required.
THEOREM 3.4.

(34) Us(t) = ®() + fot ®(t — 7) dU,(7).

Proor: This equation follows from the fact that the total number of failures
in (0, ¢] is equal to the number of failures in (0, ¢] before the first preventive re-
moval plus the number of failures in (0, #] that follow preventive removals,
summed over all the preventive removals that take place by &.

TeEOREM 3.5. R(t; ), the probability of no failure in (x, x + t], may be ex-
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pressed as follows:

(35) R(52) = 0(a) + [ %z = ©) dU,(),
where

W) = 1= Pz +6:0) + [ 11— Flz + t:9)) de(y)

(3.6) ‘
+ fo [1 —F@ - 7:0)]d,a(r, ),

and @(r, r) is determined by the following integral equation:
a(r,2) = (s +7:0) = A(:0) + [ (4G + 7:9) — 4(a: )] d&Q)

(3.7) ’
+fo A(r — u:0) da(uy, 2).

Proor. For any fixed ¢, define a stochastic process {Z:(x): z = 0} by

Zi(z) = 1 if no failure occurs in (z, z + {]
8% 710 if any failure occurs in (x, z + ¢].

Clearly, R(t; ) = Pr{Z.z) = 1}. According to the assumptions defining this
model, Z;(x) is an equilibrium process over z, as defined by Smith [13]; i.e., if
Sy, is the time of the last preventive removal in (0, z] (with probability one,
this is a well-defined point because of Assumption 5), we have

Vilz — Sy,
1 — Gz — Sy’

where ¥.(x) = Pr{Z,(z) = 1, N,(z) = 0}, i.e., ¥,(x) is the probability of no
failure in (z, z + t] and no preventive removal in (0, z]. Then, as Smith pointed
out ([13], p. 15, (34.3)), R(t; z) = ¥u(z) + [0 ¥(x — &) dU,(¥).

Now ¥,(z) is equal to the probability of no removal of either kind in (0, z + ]
plus the probability of one or more successive failures in (0, z], with the last
replacement remaining in the system past # + ¢, plus the probability of no pre-
ventive removal in (0, z], no failure in (z, ¢ + ¢}, but one or more preventive
removals in (z,  + ¢]. Thus, by utilizing this breakdown, we obtain (3.6), with
Q(r, x) defined by

(3.8) Pr {Zt(x) =1 |N,,(x) > O;SN,,(z)} =

o

(3.9) a(r,2) = 2, 87(r,2),

=1

where @ (7, z) is the probability of at least j preventive removals in (z, z + 7),
no failures between r and the jth preventive removal and no preventive re-
movals in (0, z].

Clearly, @ (r, z) is the probability that the initial component is preventively
removed in (z, ¢ + 7] plus the probability of one or more successive failures in
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(0, z] followed by a preventive removal in (z, z + 7]. Thus, we have,
a®(r,z) = A(z + 7:0) — A(z:0)

(3.10) :
+ [ 4G + ri9) — Az y)] o).

Furthermore, for j > 1,
(3.11) a9 (r,z) = f A(r — u:0) da¥ ™ (u, z).
0

From (3.9) and (3.11), we obtain
a(r,z) = @¥(r, z) + fofA(T — 4:0) da(u, ).

Substituting (3.10) yields (3.7) and completes the proof.

4. Asymptotic results. In the previous section, methods were developed for
determining the expected number of failures, the expected number of preventive
removals, and the reliability function for a single component position for finite
time. Now the asymptotic properties of these functions will be established by
using well-known results from Renewal Theory. It has already been pointed out
that the times between consecutive preventive removals constitute a renewal
process and that the random variable Z.(x), which is equal to one when no
failure occurs in an interval ¢ following system age z is an equilibrium process in
the sense of Smith [13]. Furthermore, it will be shown that the number of failures
by system age z is a cumulative process, as defined by Smith ([14], p. 262).
Using these ideas, the limiting values of the significant statistical measures of
performance will be expressed in terms of » defined in Theorem (3.1) and the
moments of G(¢).

First, we shall consider the asymptotic properties of U,(f) and other proba-
bilistic measures of N,(t). The pertinent theorems fall into two categories, de-
pending upon whether or not the time between preventive removals is a lattice
random variable. For a system model which corresponds to a policy of preventive
maintenance such as marginal test, system check-out, or block change at fixed
intervals, G(¢) will of course be a lattice distribution function. If, on the other
hand, the times between these maintenance procedures are random variables with
a continuous distribution function, G(¢) will be non-lattice. Well-known results
in Renewal Theory, as summarized in [14], [15], lead to the following asymptotic
properties of N,(t) and U,(f). We make the convention that u;' = 0 when
M1 = ©. .

(a) lims,o Np(2)/t = uia.s.
(b) lim e, Up(t)/t = pi.
(¢) If G(¢) is a lattice function with period 7,
limew {Up(t + 5T) — Uy(D)} = jTui
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If G(t) is non-lattice,
lim¢,e {Up(t + Af) — Uy(t)} = Atﬂl_l-
(d) For G(t) lattice with period T and u; < o,

limye (U, (T) = T} = 25Ty
1

For G(t) non-lattice and p; < o,
lim:-m{Up(t) - tﬂl_l} = {l‘2/(2l‘i)} - L

(e) If G(¢t) is lattice with period T and wu; is the probability of a preventive
removal at jT, im .o u; = Tui'.
(f) Let o5(¢) = var N,(¢) and ¢1 = ps — pi < . Then

lim,.. {o5(t) /8 = o1/ui .
(g) Ifol < o,

limsae Pr {Np(8) = tur’ — aoyur (b)Y} = (2r)7? f e dy.

In order to obtain corresponding asymptotic results about N;(¢) and U(t),
we shall prove that N;(¢) is a cumulative process as defined by Smith [14] and
that all the moments of the number of failures between preventive removals are
finite. Results of Smith may then be applied directly.

THEOREM 4.1. N;(t) is a “‘cumulative process” with 0 and the times of preventive
removal as regeneration points, v.e., of T1, T, - - - are the times at which preventive
removals occur, the following conditions hold:

(1) Ny(T1) —0,Ns(Ty) — Ny(T1), - - - s a sequence of independent, identically
distributed random variables.

(2) Ny(t) is, with probability one, of bounded variation in every finite t-interval.

(Smith’s third condition is redundant in the present context since N(f) is
non-decreasing.)

Proor. Condition 1 follows from Assumption 7. To establish Condition 2, we
note first that the number of failures between two preventive removals is clearly
finite with probability one, since

lim Pr{N,(T;) — Ny(Tiy) = n} = lim B () < lim (1 — )" = 0.
n->w n->00 n-»0
Furthermore, in Assumption 5 we have assumed that, with probability one, only
a finite number of preventive removals occur in any finite interval. Together,
these two ideas validate Condition 2.

TaEOREM 4.2. Let v, be the rth moment of Ny(T:) — Ny(Ti), the number of
failures between preventive removals. Then, forr = 1, », < o,

Proor: Since the probability of exactly n failures between preventive removals



RELIABILITY UNDER PREVENTIVE MAINTENANCE 145
is equal to B (») — B™™ (), we have

b= S (B™ (@) — B (w0)].

n=1

Furthermore,
2WB"(w) £ 201l —a)" < =
n=1 n=1

so that

= 2 =0 (7) SnB(e) <

k=1 n=1

Now we have all the preliminaries necessary to stating the asymptotic proper-
ties of Uy(t) and Ny(t).

THEOREM 4.3.

(a) limeae (N7(8))/t = vy’ a.s.

(b) lime. (U(8))/t = »pi

(c) Let o3(t) = varNy(t) and v = o3 — 2powevii’ + oiviur’, where

2 2 2 2
0'1=[l.2—;l.1< °°,0‘2=1'2—V1,and

0 C ) t
poLog = Z[ nt d, l:f Alt:y) dB(")(y):l — .
n=1 Jo 0

Then lime,o {o7(2) /8 = yui'.
(d) If K2 < ®©,

lim Pr {N,(t) — nui't < alytur)'} = (21)—*_[ e dy.

t>o0

Proor: Statements a and b are direct applications of Smith’s Theorems 7
and 8i. [13]

Statements ¢ and d are given by Smith’s Theorems 8ii and 10 where p is the
correlation between the random variables T; — T:; and Ny(T:) — Ns(Tiy).
Clearly,

B{IT: — TosllN,(Ts) — N(Ti)]} = g [ " wtd, Pn, 1),
where P(n,t) = Pr{N;(T:) — Ny{(Ti1) =n,T; — Tiuy < t}. Thus, P(n, t) is

equal to the probability of n successive failures followed by a preventive removal,
all in the interval (0, {], namely

P(n,) = [ 4(t:1) dB(),

from which the expression for pgia2 follows.
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The final limit results of interest in this study concern the existence of an
asymptotic reliability, the limiting probability of no failure in an interval of
length ¢ as the system age goes to infinity.

THEOREM 4.4.

(a) Suppose G is a lattice distribution function with period T'. Then, if py < «,
forally < T,

lim R(t; kT + y) = pi' ;\Iu(jT + ),
-] =

where ¥.(x) s defined in (3.6) and (3.7).
(b) Suppose G is a non-lattice distribution function. Then, if p < ,

lim R(t;2) = 4 [ v,(z) da.

Proor.

(a) It was pointed out in the proof of Theorem 3.5 that Z,(x), the random
variable which is equal to one when no failure occurs in (z, z 4 ] is an equilibrium
process over z. Furthermore, from (3.6) and (3.2),

J_Z_;\Iu(jfl’+y) é,._zo“ —GUT+y+D=m

so that, if u < o, > 50%.(5T + y) converges. Therefore, Smith’s Theorem 3
[13] yields (a).

(b) Since Z,(z) is an equilibrium process, G( ) = 1, and ¥(z) is of bounded
variation in every finite z-interval, Smith’s Theorem 2 [13] yields (b).

An interesting interpretation of (b) is obtained if it is noted that [¢ ¥.(x) dz is
the expected time between preventive removals for which Z;(z) = 1, i.e., the
interval to a failure is greater than ¢. Thus, the asymptotic reliability function is
expressed as the ratio of two expectations.

6. Applications. It will now be shown that a number of different preventive
maintenance policies fit the assumptions of the general model, and the appropri-
ate F(z:y), A(z: y), and B(z: y) will be derived for each.

(a) Block changes. Under this policy, all components of a glven type are re-
placed simultaneously at times independent of the failure history of the system.
It is assumed that the times between replacements are independent, identically
distributed random variables. This includes replacement at fixed intervals as a
degenerate case. It is further assumed that Assumptions 1 through 6 are valid.
To justify Assumptions 7, 8, and 9 we note first that, clearly, for each com-
ponent position, a preventive removal constitutes a regeneration point. Now we
peed only derive F(z: y), A(z: y), and B(z: y) and show that they have the
correct properties.

THEOREM 5.1. Let preventive removals occur at times Ty, Ta, --- where Ty,
Ty — Ty, Ts — Ta, --- constitute a renewal process with distribution function
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H(t), with H(0) = 0 and H( ) = 1. Let failure removals occur immediately upon
component fatlure and the age at component failure have a distribution function
®(t), with ®(0) = 0,®( ) = 1, and satisfying

{jom ®(¢) dH (¢ + y)}/{l —Hy)l =1 —aforally, where0 <a <1.

Then, under assumptions 1-6, assumptions 7-9 hold with
(61) F(z:y) = {®(z — y)[1 — H(z)] + H(z) — H(y)}/{1 — H(y)},

(52) A(z:y) = {foH [1 —&(¢)]dH(t + y)}/ {1 —H(y)},

(53) Blziy) = { [Cu-me+ y>1d¢<t>} /- mw).

Proor. To justify (5.1) we express F(z:y) as follows:

P {component fails by age  — y and no preventive removal occurs
in (0, z] or first preventive removal occurs in (y, z]

Pr {no preventive removal in (0, y]}

which directly yields (5.1). Moreover,

F(z:y) =

first preventive removal occurs in (y, z] and component
does not fail before this preventive removal
Alz:y) =

Pr {no preventive removal in(0, y]}

This justifies (5.2), and (5.3) follows by subtraction. Assumptions 7, 8, and 9
are clearly satisfied.

For the case in which block changes occur at fixed intervals of length T, we
have

mo - 5
so that .
(5.4) F(z:y) = {‘f(x —Y s
(5.5) A(z:y) = {(1) —&(T — y) ;; ; '_’-lr’
(5.6) B(z:y) = {zgw—_yy)) ;; ; 'g

The problem of block changes has been studied in detail by Welker, Drenick,
and Barlow and Hunter [18], [5], [2] among others. In particular, the problem of
finding that replacement interval which minimizes total maintenance costs has
received attention.

(b) Individual component replacement on the basis of age. Under this policy, a
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record is kept of the time of installation of each component. When a component
enters the system, as a preventive replacement or as the replacement for a failed
component, the time when it will be preventively removed is scheduled. Thus,
T, , the component age for a scheduled preventive removal is a well-defined
random variable. Moreover, a failure removal occurs immediately upon com-
ponent failure and T , the component age at failure, is a second random variable.
If T, < T, , the component is preventively removed at age T, , while, if T, < T, ,
the component fails at age T, . In the degenerate case, T, may have a fixed value.
It is assumed that Assumptions 1 through 6 are valid. Here again, it is clear that
each preventive removal, and, in this special case, each failure removal, con-
stitutes a regeneration point. We shall derive F(z: y), A(x: y), and B(z:y) and
shows that Assumptions 7, 8, and 9 are satisfied.

TaeorREM 5.3. Let the time to scheduled preventive removal T, , measured from
system-entry time, have distribution function, H(t), with H(0) = 0 and H(») = 1.
Let the time to failure, Ty , measured from system-entry time, have distribution func-
tion ®(t), with ®(0) = 0, ®(») = 1, and [5 ®(¢t) dH(¢) < 1. Then, under As-
sumptions 1-6, Assumptions 7-9 hold with

(5.7) F(z:y) =&z —y) + Hz —y) — &z — y)H(z — y),
(58) Ay = [ 11— 2] aH®),
(59) B(z:y) = fo 1= B da ().

Proor. In this case, F(z: y) is simply the probability that either T, = z — y
or Ty < z — y. Similarly, A(z: y) is the probability that T, < z — y and
T; > T, . Conversely, B(z: y) is the probability that Ty < z — yand T, > T;.
Assumptions 7, 8, and 9 are clearly valid.

If preventive removals are scheduled at a fixed time T after system entry,
ie.,

-t 15T
we have -
(5.10) Fz:y) = {‘i’(w ) © - Z ; g
i 1@ =0 ey 21050
(5.12) B(z:y) = {Z% - y) - g ; g

The policy of individual component replacement on the basis of age was
studied in detail by Brender. [4] Based on a linear cost model, the maintenance
cost functions, both exact and asymptotic, were derived.
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(c) System check-outs. In a complex system, it is often true that a large number
of components are used only intermittently. In this case, a component may fail
while it is not being used, but it will not induce a system failure until it is called
into use once more. Furthermore, the probability that the component fails during
an interval of non-use may be different from the probability that it fails during a
usage interval of the same length. In a system in which a large fraction of the
components have relatively long periods of non-use, it should be practical to
prevent system failure during operation by conducting periodic system check-
outs in order to locate and replace those components which have failed but
which have not yet induced system failure. We shall now formulate a model to
represent the essential features of this policy.

ASSUMPTIONS.

(cl1) Assumptions 1-6 of the general model.

(¢2) In each component position, the state of being in use alternates with the
state of non-use. The intervals of non-use have distribution function Ho(t) =
1 — ¢, The intervals of use have distribution function Hy(f) = 1 — ™.

(e3) At system age zero, the component is in the non-use state.

(c4) The probability of component failure by the end of time y, of non-use
and time y; of use depends only on y, and y: and is independent of the times at
which changes of state occur. Let this probability be called K(yo, %1), and let
K(0,0) =0,K(°,y) = 1forally:, K(yo, ) = 1forall y,.

(c5) When a component fails during a use interval, it causes system failure
and is removed immediately. When a component failure occurs during a non-use
interval, system failure is delayed until the next change of state.

(c6) At the end points of fixed intervals of length T, checks are conducted,
and all components which have failed without causing system failure are re-
placed. These checks require zero time and do not interrupt the use non-use
pattern.

To shed further light on Assumption c4, consider the case for which K (yo, y1)
is absolutely continuous in both variables and let k:(yo , v1) = 0K (yo, ¥1) /0y,
i.e., ki(yo, 1) is the failure density in state ¢ after time y, in the off state and
time y; in the on state. Then Assumption ¢4 implies that dko/dy, = 9ki/dyo . For
example, suppose ko(yo , 1) = cki(yo, ¥1), where 0 < ¢ < 1, i.e., roughly speak-
ing, the component fails only ¢ times as fast in the off state as in the on state.
Then K(y, 1) = K(cyo + %), where K is a distribution function of one
variable.

In order to derive F(z:y), A(x:y), and B(z: y), we pursue roughly the follow-
ing line of reasoning: We note first that because of Assumption (¢5) every failure
removal must occur during a period of use, and, considering (¢5) and (c6),
every preventive removal must occur during a period of non-use. Thus, F(z: 0)
will be the probability of removal by component age x, given non-use at age 0
and given check points at component age T, 2T, --- . If kT <y < (k 4+ 1)T,
F(z:y) will be the probability of removal by component age z — v, given use at
age 0 and given check points at component age (k + 1)T — y, (k + 2)T — y,
-++ . Because of the assumption of exponential intervals, it is not necessary to
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take into account the length of time that the use or non-use state has been going
on when a replacement occurs. A (z: y) and B(zx: y) will be derived from F(z: y)
by noting that all removals at check points, T, 2T, - - - , are preventive removals
while all those in the open intervals (0, T), (T, 2T), - - - are failure removals.

We start by defining and formulating the distributions of total use time which
will be necessary to this analysis. Let state 0 be the state of non-use and state 1
be the state of being in use.

DEFINITION.

(i) Vj(u, t) is the probability that, in an interval of length ¢, the total use
time is equal to or less than u; and the component is in use at the end of the
interval, given state j at the beginning of the interval, where j = 0, 1, and
0=sw=st

(ii) Wi(uo, w1, t) is the probability that, in an interval of length ¢, the total
use time is equal to or less than u; , there is at least one transition into state 1
during the interval (0, f], the component is in state 0 at the end of the interval,
and the total non-use time before the last transition into state 1 is equal to or
less than u , given state j at the beginning of the interval where j = 0, 1, and
0§u0§t—ul,0§u1§t.

THEOREM 5.5. On the basis of Assumption (c2),

(a) Vi(w, t) vs absolutely continuous in u, in the interval (0, ] with density
funetions v;(u1,t) = (8/0u) Vi(us, t) given by

(5'13) vo(ul , t) - xe—k(t—ul)e—pul io [A(t —(:::]i))z]"[ﬂ'ulln .

) o N — )] )"
(5.14) viuy, t) = e A ni(n + 1)1 ’

or by the equivalent representations
(5.13")  vo(ur,t) = ATV {20 — wr) (i) 1P},

i
(5.14,) vl(ul, t) = )\e_)‘(‘—ul)e‘“ul [W‘f’f—lu—l)] 11{2[X(t - ul)(p.ul)]*}.

(b) Wi(uo, w1, t) 18 jointly absolutely continuous in (uo, 1) for 0 = uo =
t — uy,0 = wy = t, with density functions

wi(ug, ur,t) = (8*/0ueduy) Wi(uo , w1 , £)

given by:

(5.15) 'U)o(uo y U, t) = A”e—)‘(t_“l)e—‘“‘l ZO [Au_l(]n[T‘;:‘_i 4
0 n| n+l

(5.16) wi(uo, U, 1) = Aue T (haso e

o nln 4+ 1)’
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or by the equivalent representations
(515")  woluo, u, t) = ue Ve Lo 2 (Aua) (wun) I,
(5.16)  wi(uo, Uz, £) = e Ve uuy/Nuol I { 2[ (Muto) (wur) 1%} .

where Iy and I, are modified Bessel functions of the first kind.

Proor. Vo(u:, t) is the sum over n of the probability that the sum of » + 1
intervals in state 0 and » intervals in state 1 is less than or equal to ¢, but that
the sum of n + 1 intervals in state 0 and n + 1 intervals in state 1 is greater
than ¢, where n = 0, 1, - -- , and that the total time in state 1 is equal to or
less than u, . Thus,

0 t

Vour, ) = 3 [ P =) — B (¢ - 2) B (a).
n=0 vYi—u;

where H{™ or H{™ denotes the nth convolution of H, or H; with itself and H{

and H® are unit step functions. By analogous argument,

) t
Vius, t) = Eoft H"(t — z) — H™(t — )] dH" (2).
=0 Ji_u,
Substituting the values of H, and H, from Assumption (c2), we obtain (5.13)
and (5.14).

Wo(uo , u1, £) is the sum over n of the probability that the sum of » intervals
in state 0 and n intervals in state 1 is less than or equal to ¢, but that the sum
of » 4 1 intervals in state 0 and n intervals in state 1 is greater than ¢, where
n = 1,2, ---,that the sum of the state-1 intervals is less than or equal to «; and
the sum of the state-0 intervals before the last transition into state 1 is less than
or equal to uo . Thus,

Woluo,ur,t) = fﬁ fo fo [1 — Ho(t — 2 — y)] dH$” (z) dH™ (y).

n=1

By analogous argument,

L

uy ug
Wiluo, u,) = 2 [ 11— Holt — = — )] dH (@) aHI ().
Substituting the expressions for Hy and H; from Assumption (¢2) yields (5.15)
and (5.16).

The reader should notice that these arguments apply to general distribution
functions H, and H, if it is assumed that the component enters state j at the
beginning of the interval of length ¢. The assumption of exponentiality is critical
only in that the definitions of V; and W require that these functions be inde-
pendent of the length of time spent in state j prior to the beginning of the interval.
This analysis is similar to that developed by Takdcs [16] to express the dis-
tribution of sojourn times in each state of a two-state Semi-Markov process.

We now proceed to define and formulate expressions for the joint distributions
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of time to component failure and to component-induced system failure. Let
®;(t1, t;) be the probability that a component which enters the system at 0
fails in the interval (0, ;] and induces a system failure in the interval (0, %],
given state j at time 0.

THEOREM 5.6. Forall0 < y < t, < =,

t
o(t, 1) = _/; Kty — w1, u)ve(ur , t1) duy

121 t1—uy
(5.17) + j; j; (MR (ug, wy)

+ 1 =™K —uy , u1) b woluo , us , 1) duo duy
+ K(t,,0)[e ™ — ™,

t
®:(t ) k) = K(O, tl)“"—"‘1 + fo Kt —w ’ u)v1(uy ’ t) du,

171 t1—uy N
+ f f {e ™K (ug, )
o Jo

+[1- e—w’_‘l)]K(tl - U, ) }wl(uo y Uty t) dug duy

(5.18)

t
'I‘ /(; {e—x(tg—t;)K(O’ ul)
+[1 — ™K () — uy, wy) Jue e gy,

where K(yo, y1) 1s defined in Assumption (c4) and vi(u,, t) and wi(uo, %1, t)
are expressed in Theorem 5.5. For 0 = t: < t ,®:(t1, &) = ®s(t2, t2).

Proor. The probability that a component fails in (0, #;] and induces a system
failure in (0, &, is the sum of the probabilities of three mutually exclusive events,
ie.,

A: Component failure in (0, ] and state 1 at ¢, . System failure is
induced in (0, %].

B: Component-induced system failure in (0, #] and state 0 throughout
[t1, ). In this case, the component is in use at some time during (0, t,] and
fails before the last transition into state 0.

C: Component failure in (0, #], state 0 at ¢;, and a transition into state 1 in
(tl ] t?]-

Under the condition that the component is initially in state 0, these events occur
with the following probabilities:

131
Pro(4) = j; K(ty — w1, w1)vo(wa, b)) du, ,

t1—uy

ty
PI'o(B) = e-)‘“’_") ‘/; /; K(’uo N ul)wo(uo , U1, tl) d’uo du1 N
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PI‘o(C) = [1 bt G—M‘z-h)]l-K(tl ) O)é}—m1

121 t1—uy :
+ _/; j; K(tl — U, ul)’wo(uo , U1, tl) duo dul] .

If the component is initially in state 1, the corresponding probabilities are as
follows:

31

Pri(A) = K(0,t,)e™ + j; K(ty — uy, w)o1(ua, t) duy ,
t1
Pra(B) = | [ K0, u)ue 17
31 t1—uy
+ j; _/; K (ug , ur)wi(uo , 1, t1) dio du1:| ,

ty .

Pl‘l(C) = [1 —_ e—)\(tz—u)]l:fo K(tl —u, ul)pe_""‘e‘“‘""‘l) du,

121 t1—uy
+ f f K(ty — w1, wa)wi(uo , w1, t1) dugduy | .
o Jo

Now we can express F(z: y) in terms of ®, and &, .
THEOREM 5.7. ForjT =z < (j+ 1)T,

(5.19) F(z:0) = &(T, ©) + &z, z) — &(T, ),
and for y > 0,
(520) F(z:y) = &(jT —y, ) +&(z — y,z — y) — &GT — y,z — ¥).

Proor. A component is removed by z if it fails by the last check point (j7)
before z or if it causes a system failure between the last check point and z. A
component inserted as a preventive replacement is initially in an interval of
non-use so that F(z: 0) is expressed in terms of ®,, while a replacement for a
failure is initially in an interval of use, so that, for y > 0, F(x: y) is expressed
in terms of &, .

TueoreMm 5.8. For jJT =z < ( + 1T,

(521) A(z:0) = ®o(jt, ©) — kEjl[tbo(kT—, kT—) — &(kT — T, kT—)]

and, fory > 0,

A(z:y) = &:1(JT — y, =)

22 i
G2) _ > [@(kT — y—, kT — y—) — &(kT — T — y, kT — y—)].

k=[y/T]+1

Proor. The probability that a component inserted at zero is preventively re-
moved at kT is F(kT:0) — F(kT—:0). Thus, the probability of preventive re-
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moval by z, where jT < 2 < (j+ 1)T is

A(z:0) = Z;: {F(kT:0) — F(kT—:0)}.
Substituting (5.19) yields (5.21). Correspondingly, for y > 0,

J
A(z:y) = 2. (F(kT:y) — F(kT —:y)},
k=[y/T 141
where ([y/T] + 1)T is the time of the first check point after y. Substituting
(5.20) gives (5.22).

It is clear that Assumptions (7), (8), (9a), and (9b) of the general model are
satisfied by this particular model. In order to satisfy Assumption (9¢), it is
necessary to place a restriction on K(yo, %1), i.e.,

AssumpTiON ¢7. K(%o, %1) is such that there exists an o > 0, for which

> eo(kT—, kT—) —@o(kT — T, kT—)] £1 — a,
k=1

gl:‘ (kT — y—, kT — y—) —u(kT — T — y, kT — y—)] S1 — o,

for all y < T, where ¢ and ¢, are given by (5.17) and (5.18).

The basic ideas underlying this model were presented by the author in [9].
However, in that paper it was not recognized that preventive replacements must
occur during non-use intervals and failures must occur during use intervals, so
that the analysis contains certain errors. Furthermore, prior to the present work,
no attempt has been made to provide for different failure probabilities during
intervals of use and non-use.

(d) Marginal testing. Marginal testing is an important part of the preventive
maintenance technique used for many electronic systems, particularly for
electronic computers. The standard procedure consists of performing some test at
regular intervals with the object of locating and replacing components which are
still operating satisfactorily, but which are likely to induce system failure shortly
after the test point. A model for a system subject to this policy which meets the
assumptions of the general model will now be postulated. We assume that the
system meets general assumptions 1 to 3 plus the following special conditions:

ASSUMPTIONS.

(d1) At any time, a eomponent is in one of three states: A (good), B (marginal),
or C (failed). In state A, a component operates satisfactorily in the system and
passes the marginal test if it is performed. In state B, it operates satisfactorily
but fails the test if it is conducted. In state C, it does not perform its function
in the system and fails the test if it can be performed.

(d2) Transitions take place from A to B, A to C, and B to C.

(d3) Component behavior may be characterized by a continuous joint dis-
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tribution function of time in state A, and time to entering state C, both times
measured from system entry, i.e.,
&(t;, t) = Pritime in A < #, time to entering C =< &}, with
®(0, t) = 0 for all {;, and $( o, ©) = 1.

(d4) When a component enters state C, it immediately causes system failure
and is replaced by a new one from the same population.

(d5) At times T, 2T, - -- , measured from the initial use of the system, the
marginal test is performed. If the component is found to be in state A, it is allowed
to remain in position. If it is found in state B, it is replaced by a new one from
the same population. (Because of Assumption (d4), it cannot be found in state
C.) The performance of the test has no effect on the component.

(d6) There exists an o > 0, such that forally < T,

;[w(kT—y,kT—y)—¢(kT—T—y,kT—y)]§1—a

F(z:y) and A(z: y) may be expressed for this model by reasoning analogous
to that used in Theorems 5.7 and 5.8 for the preceding cases.
THEOREM 5.9. Forally £ 2,jT < < (j+ 1)T,j = 1,2, --- , one has

(5:23) F(z:y) = 2(T — y, »)
+<I>(x— Y,z — y) —‘b(jT—:%x— y)7
(5.24) A(z:y) = 2(T —y, )

J
- 2 [®(T — y, kT — y) — #(kT — T — y, kT — y)].
k=[y/T1+1

Proor. (5.23) is an expression of the fact that, if j7 < 2 < (j + 1) T, the
probability of removal by z is the probability that the component leaves state A
by jT or enters state C between jT and z. (5.24) arises from the fact that all
preventive removals are performed at test points T, 2T, - - - .

The analogy between this theorem and Theorems 5.7 and 5.8 is clear if one
notes that in state A of this context or successful component operation of the
preceding one, no removal occurs. If the component is in state B or there is
component, failure without induced system failure when a lattice point occurs,
the component is removed. When a component enters state C or a system failure
is induced, the component is replaced immediately. Thus the event of leaving
state A is analogous to component failure, while entering state C is analogous to
inducing system failure.

It is easily seen that this model satisfies all the assumptions of the general
model, so that the finite-time and asymptotic values of the expected numbers of
removals of the two kinds and the reliability function may be computed by the
methods developed in Sections 2—4.
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