THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION!

By Lo BrREIMAN
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1. Introduction. This note is concerned with models for one-way flow of traffic
on the infinite line. A simple and frequently used model is: at ¢ = 0, points on the
line (automobiles) are selected in accord with a Poisson process. Then velocities
are assigned to these points, independently for each point and independent of
the position of the point, drawn from the same parent distribution. The points
then maintain their assigned velocities at all times. If a fixed point on the line is
selected, then times between successive arrivals of autos at this point are, accord-
ing to the above model, independent random variables with a negative exponen-
tial distribution. This result is hardly in agreement with experiment. Frank
Haight, of the U.C.L.A. Traffic Engineering Department, suggested to the writer,
a model in which the velocity assignment mechanism is retained, but introducing
more general initial distributions. The purpose of this note is to show that in a
strong sense the Poisson distribution is the only initial distribution leading to a
“stable” traffic flow. Our main result is that for a wide class of initial distribu-
tions, the passage of time brings a convergence to the Poisson distribution.

This result was announced at the Congress of the International Statistical
Institute, September 1961, [1]. At that time Alan Miller of Birmingham Univer-
sity, and George Weiss of the University of Maryland informed me that they had
each independently obtained similar results [2], [3]. After some discussion we
established that their proofs held only for initial distributions such that the gaps
between points were independent and identically distributed, and that they had
both used analytic methods of proof, which differed considerably from our
approach. Since the present proof is short and relatively uncomplicated, it may
have some merit.

It is a pleasure to acknowledge the pleasant and illuminating conversations
on this subject with Frank Haight.

2. The Model. At ¢ = 0, let there be a set of starting points X;, Xz, --- on
the negative real axis which are obtained as observations of a stochastic point
process. Concerning this process we assume

(a) A spatial density o exists with probability one, i.e.,

limg— {no. of X; in [0, —z]} /2 = o,

with probability one.
(b) There is no “clumping up” of autos, i.e., for any finite interval I, the ex-
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pected number of X}, in I can be bounded above by M, where M depends only
on the length of I.

Associated with X, is V3, its velocity. The V; are assumed independent of
each other and of the X;, X,, --- random variables, with common distribution
G (v) = P(Vy <v),G@® = 0,v < 0. Further,

(¢) Gw) = [7g(u) du, where g(4) is almost everywhere continuous (w.r. to
Lebesque measure) and bounded on every finite interval.

Denote by Xi(¢f) the position of the kth auto after time ¢ Xi(f) =
X + tVi, and let Ny(I) be the number of X;(¢) in the interval I, where
|I] < o, (]I| = length of I). Then we prove.

TaeorEM. Under (a), (b), (¢) above, for fixed I, j,

lim.., P(N(I) =j) = \/jD)e,  where\ = o |[I].

3. Prelude to the Proof. A Poisson convergence theorem is necessary which
differs only slightly from the classical: consider for every n an infinite sequence
of trials Z{™, Z§™, - - - which are independent for fixed n and result in either suc-
cess or failure, with P(Z{™ = 8) = P{”, P(Z{™ = F) = 1 — P{™. Let N, be
the total number of successes in the nth sequence.

TeEOREM. If
(1) P N asnm— »
k=1
(ii) sup; P\ -0 asn— o«
then for fixed j, -

lim, P(N, = j) = (\/jDe™.
The proof is immediate (see, for example, [4] pp. 263-264).

4. The Proof. We will compute P(N¢(I) = j | X1, Xz, ---) by noticing that
for fixed X;, X,, ---, the X3(¢) are independent. We will count a success if
X (t) € I, otherwise a failure. Applying the result of the above paragraph, if

(i) lim,.msz(Xk(t) el | X1, Xy, -++) =\

(ii) llm,,_.oosuka(Xk(t) €I|X1,X2, "‘) =0
then
limg P(N,(I) = j| X1, Xz, -+2) = (N/jDe™.

Because, even though ¢ is a continuous parameter the above theorem will yield
the desired limit law for every sequence ¢, — «. Suppose (i) and (ii) above hold
true for all values of X;, X,, --- with the possible exception of a set of prob-
ability zero, where A is a constant not depending on X;, X,, --- . Then the
resulting limit law is true for all values of X;, X,, - - - again with the possible
exception of a set of probability zero. Now, we may take the expectation of both
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sides of the limit law and using the boundedness of the left-hand side (since it
is a probability) apply the Lebesque bounded convergence theorem to prove the
desired result. For any interval J = [o;, v,), define G[J] as G(v2) — G(vy).
With this

P(Xp+tViel| Xy, ) =P(Vie[I—Xu)/0| X1 -+ ) =Gl — X)) /1],
and
supy GI(I — X&)/t £ sup. G(I/t + u),
— o < u < + oo,

If the expression on the right does not go to zero as t — «, there exists a sequence
of intervals Jy, Jy, - - - such that | J, | — 0, but G(J,) + 0. Since any continu-
ous distribution function is uniformly continuous on the whole line, this is
impossible.

As for (i) suppose, initially, that there is a v such that g(v) = 0, v > v, . Let
M(y) = {# Xxin (0, —ty), y 2 O}, and note that

Se= ;P(Xk(t)el | X1,-00) = Zk: GI(I — X))/t = fow G(I/t +y) dM (y).

Place m,(y) = M.(y)/t, getting S, = [T tG(I/t + y)d m:(y). The idea is now
simple; if g(v) is continuous, g(v) = 0, v > vy, then G(I/t + y)/(|I|/t) con-
verges uniformly to g(y) and is zero for y > v + ¢, ¢ sufficiently large. On the
other hand, m,(y) — oy, with probability one (and the same exceptional set for
all y). Therefore,

lim,Se = | 11o [g@)dy = 1]e

If g(v) is not continuous, then by (c), for ¢ > 0, there exists a »; > v, and con-
tinuous functions g~ (v), g*(v) such that they vanish for » > v, g~ (v) =< g(v)
< g*(») and

fovl (gt (uw) — g () du £ e

Placing G~ (v) = [b g (w)du, GT(v) = [§ g7 (u)du, we have
G(I/t+y) =6I/1t+y) = G I/t + )
therefore, .

[ @+ am s 8.2 [t + gy am,.

By the former discussion, the left and right hand sides converge to o}l|
- [gdy, o|I| f g dy respectively, and since these are bounded below and above
by o|I| (1 & ¢), the result follows.
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Finally, there remains the problem of disposing of the cutoff point v, . For an
arbitrary G(v) satisfying ¢), and any ¢ > 0, take v, such that 1 — G(v) = e
Define another assignment of probabilities V; by

VI: =V, if Vi = Yo,

Vi = Y, if Vi > v, where Y} is selected independently from the uniform

distribution on [0, v,
and let N:(I) be the number of autos in I after time ¢ under the velocities V7 .
Note that the event N, # N occurs only if, for at least one %, either one or both
of Az, A5 occur, where

A Xu(t) eI, Xp (1) €' 1
Av: Xo(8) € I, Xu(t) ¢ 1.
Hence '
P(N, % N;) Zk: P(A, U 4y) = ; P(A) + Zk P(Ay)

P(4) S PG e LV > w) = [ P(Xy+we ) d6),
vo
;P(Ak) < ;f P(Xy eI — vt) dG(v) = f [>° P(Xy eI — ot)] dG(v).
v 0
The expression Y i P(X; ¢ I — vt) is the expected number of X} in the interval
I — ut, and by (b) is bounded by M, not depending on vt. Thus D P(A4z)

=< Me. For the second sum P(4;) < P(Xi(D)el, Vi > ) = P(Xy + Yit e I)
<P(V; > v). This yields

S P(Ay) £ e, l/vof ' P(XyeI —d't)dv
k k- 0

and using again  , P(X, ¢ I — o't) £ M, gives > 4 P(A;) < Me. Putting
things together, P(N, # N;) < 2Me from which follows

|P(N, = j) — P(N: = j)| < 2Me.

Using our former result, lim, P(N; = j) = A/jle™, A\ = ¢ |I], and since e is
arbitrary, the limit relation also holds for P(N, = j).

The writer is indebted to the referee for a correct proof of the result
P(N, ## Ni) £ 2Me, and other helpful comments.

REFERENCES

[1] BremaN, L. (1961). On some probability distributions occurring in traffic flow. To be
published in Proc. 30th Congress, Internat. Statist. Inst., Paris.

[2] MiLLER, A. On the theoretical justification of the random queues model for road traffic
flow. Submitted to Proc. Cambridge Philos. Soc.

[3] HerMAN, R. and Wzuiss, G. (1962). Statistical properties of low density traffic. Quart.
Appl. Math. 20 121-130.

[4] FeLLer, W. (1957). Probability Theory and its Applications. (2nd ed.). Wiley, New York.



