STOCHASTIC PROCESSES ON A SPHERE!

By Ricuarp H. Jonms’

University of Stockholm

0. Summary. Spectral representations of stochastic fields on a sphere are given
for spherically symmetric and axially symmetric cases. Unbiased estimates of
the spectral parameters are presented and the variance calculated for normally
distributed fields. Time varying processes are discussed briefly with reference to
terrestrial situations.

1. Introduction. Let £(P) be a real valued random field on a unit sphere, S , of
the three-dimensional space R, which has finite variance and realizations, z(P),
which are quadratically integrable over the surface of the sphere

[ #(P) dar < ;
P

Qp denoting the surface element, and fp integration over the entire surface. Be-
cause of the completeness of the spherical harmonics Y3 (P), the random field
may be represented

0 14

(1) E§P) = ;0 m;yzme:"(P).

By an isotropic field we mean one whose covariance depends only on the spheri-
cal distance between two points and whose mean E£(P) is constant. Without
loss of generality, it will be assumed that E£(P) = 0, which implies EZ,,, = 0.
The conditions for isotropy for normalized spherical harmonics

( f,, (Y (P))der = 1)
are

(2) EZVmme = 5vu5mnfv =0

d;; being the Kronecker delta. The representation (1) and conditions (2) were
given by Obukhov in 1947 (Yaglom, [3]).
The covariance function is

0 v I

"(P,Q) = Be(P)EQ = 230 3 3 BV T(P)VE(Q),
Calling the angle between two points P and @, v»¢ , and using the conditions for
isotropy (2), 7(vre) = D 20fy Dome, Y™(P)Y™(Q), which by the addition
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214 RICHARD H. JONES

theorem of spherical harmonics ([1], p. 268) gives

0

(3) r(yra) = 2 [(2v + 1) /4x]f,Ps(cos vrq),

v=0

where P,(cos vrq) is the Legendre polynomial of degree ». This spectral repre-
sentation of a positive definite function on a sphere was also given by Schoenberg
[2]. Multiplying both sides of (3) by Pi(cos vrq) and integrating with respect to
one of the points over the sphere, fi = [q7(vre)Pi(cosyre) dQq, since
Ja[Pi(cos v2) [’ dQq = 47/(2k + 1).

2. Estimating the Spectrum. Using a realization, z(P), of the isotropic field,
a quadratic estimate whose weight function depends only on the spherical dis-
tance between two points is

5t = [ [ wirveeda(P)e(@) dor da,
»Jo
where [o wi(vrq) dQ < ». Writing wi(yre) = Do &:P,(cos vra),

Ef: = /P/ka(VPQ)T('YPQ) dQp dQq = 47"/;1010(7%)7'(7?0) dQq

0

> a2 + 1) /Q P, (cos vpe) P, (cos vpg) dQq = 4 ;0 av fv.

Vou=0

The only choice of the a’s which gives an unbiased estimate (Efy = f;) for any
spectrum is @, = 8,4/4w. Then wi(yre) = (1/47) Pi(cosvrq), $0

(4) = f [Q Py, (c08 vro)2(P)2(Q) d2r d2.

Relaxing the restriction that the quadratic estimate depends only on the
spherical distance, consider the general weight function

(5) = fQ w(P, Qa(P)z(Q) d2r d2q,

where w(P, Q) = w(Q, P) and fp fQ w' (P, Q)dQp dQ < ».w(P, Q) may be
represented

0 © 7

(6) WP, Q) = 20 X X aumY(P)YIQ).

1=0 j=0 m=—1¢ n=—j

Equation (5) becomes (expressing the four summations in equation (6) by a
single summation sign)

(7) =T dim f fo Y2(P) Y (Q)2(P)x(Q) dfp dS.
B = 3 dim [ /; Y2(P) Y (Q)r(vre) d2r d2q

> a2 [ |, YREIVHQP. (co 120) da dag.

,Jmn y=0 4:7|'
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Using the formula for spherical harmonics ([1], p. 266)

M A1 [ o, v X
(8) 2 [ PP (008 100) 0 = { G ) =

Bfi = 2timan Gijmaf3p Yi(P) Y] (P) dQp = 2270 fi2ommmi Giimm - This will be
unbiased for any choice of the f’s if and only if

(9) Z . Aiimm = azk .
Then Efy = fs.

3. The Variance. Assuming the field to be Gaussian, i.e. for any choice of N,
the joint distribution of the field at any N points on the sphere is an N-dimen-
sional normal distribution, the variance of the unbiased estimate (5) is

ot =B [ [ [ [P @uE 9Pl

-z [ fo [ [rev@remyis)

‘[T(')’PR)T('YQS) + T(')’PB)T(’YQR)] dQp dQq dQr dQs.
The first half of this integral may be written
S (2v + 1)(2p + 1)

. Gijmn Qklpg (4 Iolfu

(10)

ijmn klipg vp=

(11) . f fa f f YH(P)YHQ)YE(R)YH(S)

-P, (COS 'YPR)P;L (COS "YQ,g) dQP dQQ dﬂ}a dﬂs-

Using (8) and the orthogonality relations, the integrals in (11) vanish unless
p=l=j,v="Fk=14mn=qgand m = p,and (11) becomes X ijmn Qsjmnfif; -
The second half of equation (10) gives the same result with a3;,. replaced by
@i jmnQjinm 7but Gjinm = Qijmn Since ’LU(P, Q) = ’LU(Q, P) S0 D2 ;: = 221,1"»1» a%jmnfifj~
Every term in this sum is non-negative since f = 0. In order to minimize the
variance under the constraints(9), all the a’s except @imm , m = —k, —k + 1,
—k + 2, - - - k, should be made equal to zero as they only increase the variance
without improving the estimate. Then D*fy = 22D %t Gitmm - This is mini-
mized under the constraint Y i Gtimm = 1 when the terms of the sum are
equal, i.e. Gwmm = 1/(2k + 1). Substituting these coefficients into (7), and
again using the addition theorem for spherical harmonics, the nonparametric
estimate of minimum variance,

D*(f2) = 12/(2k + D)Ifz,
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is fi = (1/47) [» [o Ps(cos vre)z(P)z(Q) d2p dQq , the same result that was
obtained in §2.

4. Axial Symmetry. Using spherical coordinates, the point P is determined by
6, the longitude (0 £ 6 £ 2x), and ¢ the polar colatitude(0 = ¢ < 7). Equa-
tion (1) can be expressed in terms of associated Legendre functions,

E(P) = D, . [Zymcos mO + Zyn sin mOIP(cos o).

y=0 m=0

It will be assumed here that the harmonics have been normalized so that

2
f [P'y" (cos gp) OB mop:l dQe = 1.
P

sin mlp
Now
0 0 v pu
r(P, Q) = E((P)EQ) = Z:o ZO Zo OE’[Z,,,,,Z,m cos mfp cos nlg
=0 p=0 m=0n=

+ ZymZym €08 MmOp SIn 10¢ ~+ ZymZun Sin MOp COS Nhg
+ Zym Zypm Sin mp sin n0) Py (cos op) Py (cOS 0q) -

When EZ,mZ”,; = ZivuZin = Swnfoum, 804 BEZvuZiun = —EZymZin = Omafrum »
/
(fwm = fw’m s Joum = —fuvm)»

00 00

(12) (P, Q) = 2. 2 i [foum cOS m(8p — 00) + frum Sin M (6 — 60)]

m=0 v=m p=m

- P (cos ¢p) Py (cos ¢q),

i.e. the covariance function then depends on 65, o only through the difference
0r — 0o . When EZynZun = Smnfoum = 0, the covariance function is symmetric
with respect to positive and negative rotations. That a covariance function which
is axially symmetric can be represented as in equation (12), follows from the
completeness of Pr(cos¢), Prii(cos¢), Pmis(cose), --- in the interval
0=p=m

Since the covariance function is non-negative definite, i.e.

"/; er(P, Q)c(P)c(Q) dp dQy = 0,

where ¢(P) is any quadratically integrable function on the sphere, the relations
QEF G + 20mFwbm + bmFubm = 0 where F,, is the symmetric matrix with ele-
ments fyum and F,, is the antisymmetric matrix with elements foum , MUSH be
satisfied for any finite vectors a, and b, and all values of m.

Estimates of the constants f,.» may be formed as in §2 giving

frim = f f Py (cos op) Py (cos ¢q) cos m(8p — 8g)x(P)z(Q) dp dQq.
plo

The estimate of fru replaces cos m(0, — 0g) by sin m(8 — 6q). Eftim = foum,
and if the field is normal, D*(f;5,) = 2foum . If the field is isotropic, foum = duf>
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/ o .
and fyum = 0. Writing

2
Frum = [‘/; P} (cos ¢p) cos mipz(P) dﬂp]

2
+ [j; P} (cos ¢p) sin mépz(P) de:I ,

the estimate f; may be expressed

= 5 + 7 2 E Toom = "ZO [fp P (cos op) cos mip 2(P) dﬂp:r

m—l

I:f P} (cos ¢p) sin mp z(P) dQP:r,

This is the sum of 2» + 1 integrations over the sphere squared, and in most cases
should be easier to handle numerically than the double integration given in
equation (4).

6. Time varying processes. If a random field on a sphere varies with time, the
representation (1) becomes

00

‘E(P; t) = ; m;_vzvm(t) Y?(P))
Z,m(t) being an ordinary one-dimensional stochastic process. The set of all Z,,,(¢)
form a denumerably infinite dimensional stochastic process which completely
defines the process on the sphere. In practice, however, a finite number of com-
ponents which gives a sufficiently good representation of the process can be used.
This representation has several desirable properties. If there is a tendency
towards isotropy, it would be expected that the correlations between compo-
nents, at any given time, would be low. When rotations about an axis enter, as.
when dealing with the atmosphere, the interdependence caused affects the com-
ponents only in pairs. This can be seen by considering a realization of the process
at a given time,

z(P) = Z Z [@ym cos MmO + by, sin mO)P; (cos ¢).
=0 m=0
When there is a change in the coordinate system, the spherical harmonics in the
new coordinate system can always be expressed as a linear combination of
2» 4 1 independent spherical harmonics of the same order in the old coordinate
system. When the change in coordinates is a rotation through an angle ¢ about
the axis,

0 v

> 2 [asmcosm( — ¥) + by sinm(6 — ) 1P (cos o)

y=0 m=0

I

z(P)

»

Il
Ms

[@ym cOS MmO + by sin mO]P™(cos )

y=0 m=0
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where @y, = G5im COS MY — by SIL MY, by = Qo SIL 7Y + b, cOs myp. Therefore,
the interdependence between components caused by rotations can be removed by
this transformation.

In preliminary attempts to predict the height of a constant pressure field
(500-millibar) in meteorology, it has been found that better predictions are
obtained using the representation

z(P) = i v Com c0s8(8 + Yvm) Py (oS ¢)

r=0 m=
where ¢, is the magnitude of the component and .. is the phase angle.
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