A RENEWAL THEOREM FOR RANDOM VARIABLES WHICH
ARE DEPENDENT OR NON-IDENTICALLY DISTRIBUTED!

By Y. S. CHow AND HERBERT ROBBINS

Columbia University

1. Introduction. Let 1, %2, - - - be a sequence of not necessarily independent
rvs,letx, =y + -+ yn,and for T > 0set M = M(T) = first n = 1
such that z, = T. We shall be concerned with finding conditions on the joint

distribution of the sequence (y,) which will ensure that

(1) limr, EM/T = 1/p,

where u is some positive constant, thus generalizing the theorem in renewal
theory which asserts that (1) holds if the y, are independent and identically
distributed with Ey, = u, 0 < u < «. Some results in the independent but

non-identically distributed case may be found in [2], [3]. \
(a) The dependent case. Denoting by E(- | F,—1) the conditional expectation

of - given y1, +++ , Yn—s for n > 1, with E(- | %) = E(-), our assumptions are
(2) E(Yn | Fo) = BEyn = pn (constants),
(3) liMpeo (1 + + <+ + #a)/n = b, 0<u< o,
and

4) E(|yn — ttn]” | Fn1) S K < for some o > 1.

TarorEM 1. If (2), (3), and (4) hold, then (1) holds.

(b) The independent case. Here we shall assume that the y, are independent,
with means u, = Ey, for which (3) holds, but we shall replace (4) by the
assumption that

(5) lim,,..mf (Yn —1a) =0 for every ¢ > 0,
{Un—pn>ne}
and that either
(6) f (yn_llm)g '_'K> — @,
(¥n—pn<0}
or that
(7) yn = 0.

We remark that (5) and (6) hold if E(|yn — ua|*) = K < o for some a > 1,
or if the y, are uniformly integrable about their means, i.e. if

lithy 0 [Supnglf lyn - H'nl:l = 0.
{1Yn—bn| Z¥)
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THEOREM 2. If the y, are independent, and if (3) and (5) and etther (6) or
(7) hold, then (1) holds.

2. Proof of Theorem 1. Assume (2), (3), and (4) and set p, = p1 + -+ + pa;
then limy_wps/n =4, 0 < p < . By [4], p. 286, lim, . Z,/7 = p a.s., SO
that P(M < o) = 1.

For any 0 < & < u/3 define y», = min (Y , un + 7). Then

; P(yn # ya) = 21: P(Ya — pa > nd)
= 2 P(lgn — ml* > 7% = L K(n8) ™" < o,
s0 tha,t P(y,. #= Yn i.0.) = 0. Hence, setting Th=y1+ - + y,., ;4,, = Ey,.,
=+ - +u,,,andM M'(T) = first n 21 such that z, = T, we
ha,ve hm,,_m Tu/n = u a.s., and therefore P(M < ®) =1 also. Moreover,

M = M'. We note also that by (4),

'
0= ppn— tn= (yn'—l-‘n’—ns)
{¥n—pa>nd) ,

= (yn - Mn)
{(Yn—mr>n 8 }

1 a—1
s —_— . f n — HMn “
- (n&) {¥n—rn>nd) (v o)

<K/ (n8)**—0 as n— .

Hence limgs pn/n = p.
Now define for any k = 1,2, --- , M* = min (k, M'). Then by a martingale
system theorem ([1], p. 302), E{ D> 1" [yi — E(yi | Fi-1)]} = 0, so that

Exy. = E [Z E(y: | erH)]
=% [, BIS) + -+ B 5]
- f  E@|%) +f B et [ B 5
(M 21} (M’ 22}
- j;M'gll mt -/:M’gn mt et fm'zk) He
— [ B = i = Do |5
(' 21y

— e = f , E[(yk - Mk — ka)xwk—mpkb) |‘5k-1],
(M =k}
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Wherej x4 denotes the characteristic function of the set A. And by the Holder
inequality for conditional expectations,

f . El(y: — pi — 10) X(wi—pi>isy | Fial
(M’ 2i}

= . El(yi — pa)xXwi—ni>iny | Fi1)]
(M 25}

= E""(ly; — wil*| gi—l]'Plla,(yil— pi > 18|Fia) (a+ o = aa)

(M’ 21}
< K-(@)""-P(M z4) = «P(M z4), say,
where (& + -+ + e)/n— 0 as n— . Hence
E(zye) 2 fw,;l} (m—a)+ - + /{-M'gk} (e — &)
= (m— )P = 1)+ - + PO = k) + P(M' > k)]
+ -+ (m— &)P(M = k) + P(M' > k)]
=P(M =1)(m—a)+PM =2)(m+m—a— a)

4+ PM =kt tm—a— o — )
+PM >k (m+ - Fm—a— - — &)
2L PM =) (pi—a— - — &) if & is large.

But E(zys) £ T +f <n yw £ T + /{-M - (uw + 8M"). Hence

Tz—f M'(6+|”"')+Z%P(M—z)<p'_ ."'_e‘)
(M’ k) 7

7=1

=1

zd-2[ M4 XPOC =),
(M’ <k}
where A is uniformly bounded below in k& and 7T'. Thus

TzA+w-3)[

Sk}
and letting k£ — « it follows that 7 = A + (u — 36.)EM , and hence that
(8) lim SUpr.. (EM/T) < lim supr.. (EM'/T) £ 1/u.

To establish an inequality in the opposite direction we observe that for the
martmgale (xn — Pn, gﬂ yn g 1)’

E(Ixn+1 — Pot1 — Tp + Pnl I 5")‘ = E(Iyn+l - I-‘n+1l l Fa) = K«
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and that EM < . Hence ([1], p. 302) E(xuy — pu) = 0, so that for ¢ = 4,

TS E) =B S [, a4+ [ MGt o

(9)

S |wl + oo A |l + (0 + )EM.
Hence
(10) lim infr, EM/T = 1/u,

which, with (8), proves (1).

We remark that from the fact that z,/n — u a.s. it follows easily that
limz., (M/T) = 1/p a.s. The obvious way to prove (1) would be to show
that the random variables M /T are uniformly integrable in 7', but we have not
attempted to do this.

3. Proof of Theorem 2. Assume that the y. are independent and that (3)
and (5) hold. Given any 0 < e < u/3, choose 7 = #(¢) by (5) so that
f (Yn — ua) < € forallm = 4.
{Un—Bn>ne} |

Define y» = min (Y, pta + ne) < y» and pus, = Eyr, < pn = Ey,. Then for
all n = 7 we have

(1) 0% = b = Wom =S [ (=) <e
{Un—pp>ne} {Yn—pn>ne}

Define ., , pn , pn , M’ as in Section 2. It follows from (11) that

(12) lim infa pn/n Z 1 — ¢,

and we may therefore assume that ¢ has been chosen so large that for all n = ¢
we have in addition to (11) the inequalities

(13) p—eSp/nSpte p—2e=p/m=u+e

Then for n > <,

’ i—1 n—1

= 5] — 3 pn
Zi?’ ,Z_;J( +]§J(J+1)+
= 235G + 1)+ (n — 26)2
Hence
(14) 3w/ = .

We shall now prove that lim sup,. £, = © a.s. Suppose in fact that
(15) P(lim SUpPpe Zn < ) > 0.
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Since
n yl n (xl :1}, ) n—1 x' x/
i YA T i) Y 4"
iR i+t

it follows from (15) that P(lim sUppoe O 11 (¥i/j) < ©) > 0, and hence from
(14) that

(16) P(limmf(—y-’,'——-’i"’l= —oo)>0.

iz J
But for n = 7 we have from (11) that
(Yn — un)/0 S (n + Ne — pn + €)/n < 2¢,
so that
(17) E[supazi (Y — pa)/n] < .
5

It follows ([2], p. 319) from (16) and I(17) that P{ > u_i [(yn — un)/nl
converges} = 1, which contradicts (16). Hence (15) cannot be true, and there-
fore P(lim SUpp &n = %) = 1, s0 that

(18) ISMEM <o a.s.

Defining M™* as in Section 2, we have
k
Tur = Y1+ o+ Yur = Zlyﬁ.san_l (M*),

where by definition
1if7 = n,

= 0if 7 < m.

$n—1 ('L)

Since the event M* < n is independent of z, it follows that
k
E(zys) = 25 un P(M* 2 )
n=1

. ;
= gu;[P(M'=n)+P<M’=n+1)+--~+P(M'=k)
+ P(M' > k)]

k k
=2 pn PM =n)+ptP(M >k) =D pn P(M' =n) for k> i
n=1

n=1

But E(zus) < T+ D ki (4n + en)P(M' = n). Hence

k
Tz, (pn — pmn — en)P(M = n)
n=1
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k
2 0(1) + 2 (pps — (n 4+ 1)) P(M' = n)

n=1

20(1) + X [(n—1)(u—2) — (n+ 1)dP(M’ = n)

n=1

=0(1) + (k= 3¢) 22 (n— 1)P(M' = n)

n=1

=0(1) + (u — 3¢) ,,2 (n— 1)P(M' = n),

where O(1) is uniformly bounded in k& and 7. Hence 7 = O0(1) +
(p — 3¢)E(M’ — 1), and therefore (8) holds.

So far we have not used (6) or (7). Suppose now that (7) holds.
Then Ty = . ue1Yneaa(M), and since all the terms of the series are non-
negative,

T S B(w) = 3 i PO 2 1) = 35 (/) - P(M = n)

i—1

Spiat (p+ € -EM — (w4 ¢) :/_:.1 nP(M = n).

It follows that (10) holds. ,
To prove (10) under the Assumption (6), set 2, =z, — p,. Then
(22 ,Fn,n = 1) is a martingale and by (7),

E[(2n41 — 20)" | Fn] = E[(Yn41 — pn1)7] £ K,

where ¢~ = max (0, —a). Since EM < « it follows ([1], p. 303) that
Ezy £ Ez1=0. Hence T < E(xy) = E(2u + pu) = E(pu), which takes us
back to (9), and (10) follows. This completes the proof.
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