ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR
RANDOMIZED FACTORIAL EXPERIMENTS!

By S. Zacks?

Technion, Israel Institute of Technology, and Columbia University

1. Introduction and summary. Consider a factorial system of order N = p",
which consists of m factors each at p levels. The factorial model relates the ex-
pected yield to the various treatment combinations in terms of a linear function
of N = p™ parameters (8, 81, * - - , Bv—1), Which represent the main effects and
interactions. A subset of S = p’(s < m) preassigned parameters is specified for
estimation and testing of hypotheses: The other N — S parameters are con-
sidered as nuisance ones. Unbiased estimates of the S = p° preassigned param-
eters may be obtained by different procedures of balanced random allocation
designs (see Dempster [2], [3]). In the present paper we consider unbiased esti-
mators with two types of randomized fractional replication, studied previously
by Ehrenfeld and Zacks [4]. These procedures, designated by R.P.I. and R.P.II,
are based on orthogonal fractional replication designs. As will be shown in a
subsequent paper, both procedures have some optimal properties in cases where
the nuisance parameters may assume arbitrary values. R.P.I. consists of choosing
at random, with or without replacement, n blocks of treatment combinations
from the set of M = p™° blocks, constructed by confounding the nuisance
parameters. R.P.II. consists of choosing at random n treatment combinations
independently from each one of the p° blocks, constructed by confounding the
pre-assigned parameters. The estimator of the pre-assigned parameters studied
in the previous paper is the “least squares estimator’”, commonly applied in
fractional replication procedures (see Kempthorne [5], Cochran and Cox [1]).
‘When all the nuisance parameters are zero then this estimator is the least-squares
estimator, and thus the best unbiased linear estimator. However, if the nuisance
parameters are not zero there is no uniformly best unbiased estimator. The first
question raised is whether unbiased estimates of the pre-assigned parameters can
be attained by choosing a block of treatment combinations, in a similar manner
to R.P.I., but with unequal probabilities, (unbalanced designs). As proven in the
present paper, unbiased estimates cannot be attained with a procedure that
assigns unequal probabilities to different blocks. Thus, the class of linear un-
biased estimators is studied with respect to R.P.I. The same estimators can be
applied to R.P.IL., or to any balanced allocation design that yields a factorial
model with similar properties to those of R.P.I.

The statistical model adopted in the present paper is the orthogonal factorial
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770 S. ZACKS

model. Accordingly, the main effects and interactions are represented by orthog-
onal contrasts of the expected values of the observed random variable. This is a
common practice for measuring main-effects and interactions (see Kempthorne
[5]). The resulting algebra and numerical procedures are relatively simple and
free of the difficult problems associated with the approach of Dempster [2], [3].
Basic notions as well as the required algebra for the factorial model are repre-
sented in Section 2. Theorems concerning the specification of the class of linear
unbiased estimators, and the characterization of the subclass of conditional least
squares estimators are given in Section 3. In Section 4 we prove that the subclass
of conditional least squares estimators is complete. For this purpose we first
derive an explicit formula for the variance-covariance matrix of any linear
unbiased estimator with R.P.I.; and then we show that to any linear unbiased
estimator not in the subclass of the conditional least-squares estimators one can
find a conditional least-squares estimator so that the difference between the
corresponding variance-covariance matrices is positive definite. For simplifying
the arguments and notation, the definitions and theorems in Sections 3 and 4
are given relative to a particular choice of the pre-assigned parameters for special
defining parameters, by which the classification of the treatment combinations
into blocks in R.P.I. is carried out. In Section 5.the results are generalized for
arbitrary sets of pre-assigned and defining parameters. In Section 6 the results
are extended for R.P.II.

2. Basic notions and the statistical model. Consider a factorial system of order
N = p™, where p is a prime integer, p > 1. The set X of all N treatment com-
binations is represented by

X=((t0, " ,%ma): 2, =0,--+,p—1

(2.1) .
forall j=0,---,m —1).

The jth coordinate of a point in X represents the ¢;jth level of factor
jG=0,---,m — 1). A standard order of the points = in X is given by the
relationship between the coordinates of a point z, = (%, -+, tm—) and the
order subscript v = Y_7=¢ i;p". Let ¥ (z,) be a random variable associated with
2, . The relationship between the expected value of Y (z,) and the treatment
combination z, is given, according to the statistical model, by a linear function

of N = p™ parameters 8y, 81, -+ + , Bv— as follows:
N-—1
(2:2) EY(z,) = 2 ¢ (2.)8u forall v=0,---,N — 1
u=0
and
(2.3) Y(z,) = EY(2,) + & forall v=0,---,N —1
where ¢,(v = 0, ---, N — 1) are identically distributed independent random

variables, with Fe, = 0 and E e = ¢ These variables represent the experimental
errors. The parameters B.(u = 0, --- , N — 1) have the usual interpretation of
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main effects and interactions measured by linear orthogonal contrasts of EY (z,).
Accordingly, the coefficients ¢’ (z,) which depend on z, are related to the
orthogonal polynomials of order p (see Ehrenfeld and Zacks [4]). For simplicity,
let &Y = ¢{” (x,). Furthermore, let (C®) be the matrix whose column vectors
are the coefficients of orthogonal polynomials of order p. The matrix (C™) is
given by the recursive relationship

(2.4) (C(N)) — (C(p)) ® (C(N/p))

forall N = p™,m = 1,2, --- , where (C) = 1 (scalar); and where A X B is
the Kronecker’s direct multiplication of A by B. From (2.4) and the properties
of the coefficients of orthogonal polynomials, the following properties of (C™)
can be proved:
(i) (C"™) is non-singular, and (C™)(C™) = (A™); where (A") is a
diagonal matrix with
N—1

(2.5) dy = EO (C)? forevery u=0,---,N — 1.
In particular, for p = 2 we have: (C™)"(C™) = (¢™)(¢™)" = NI";N = 2"
and I™ being the identity matrix of order N.

(ii) The sum of the elements in any column vector of (C®’) excluding the
first column, is zero. All the elements in the first column, and in the last row,
are unit elements.

(iii) The elements of (C™) are related to those of (C*®) and (C**”), N = 2™,
S =2, M = 2"",m > s, according to the relationship: (C) = (C*) ®
(€™, ie.,

(2.6) Vs = c§fi-c§£) forall ¢z =0,---,8 —1;

where t = r, + ¢S(re=0,---, 8 —1;¢:=0,--- , M — 1).
(iv) Ina 2™ factorial system, the elements of (C' Y in any row, and in columns
corresponding to 8., , B, and B are related by the rule:

(2.7) e =) forall »v=20,---,N —1

where u; , u; and k are related in the following way: If u; = S ng (N =0,1

forallj =0,---,m — 1) and up = A2\ = 0,1forallj=0,---,
m — 1) thenk = 21 A/2° where \j = \; + Aj (mod. 2) forallj =0, ---,
m — 1.

The structural relationships between the N = p™ parameters 3, are considered
intermsofaset B= (N, *** , Ama):Aj=0,:--,p—1forallj=20,---,
m — 1). Every parameter 8, is represented by an m-tuple (Ao, *+* , Am—1) such
that w = D _7=g A\;jp’. An operator ® of direct multiplication is defined over the
set B as follows: if 8= (Ao, -+* , Amez) and 8 = (Ao, -+ , Am—1) then 8 ® g =

(M, c++, Mm_y) where A = A\; + Aj (mod. p) for every j = 0, -+, m — 1.
It follows immediately that B is a group with respect to the operator ®, with
unit element By = (0, 0, ---, 0); and the inverse of 8 = (N, **, Am—1) I8
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B = (A&, -+, M) where A} = p — \; (mod. p) foreveryj =0, ---,m — 1.
Let [8]°(a = 0, --- , p — 1) denote the direct multiplication of 8 itself a-times,
where [8]° = 8, . A parameter 8, is said to be ¢ndependent of a set of n parameters
{Buy, *** , Bu, if there are no n numbers @, - -+, @, such that Sraar > 0,
and B, = [B4,]" ® [84,]” ® + -+ ® [B.,]™. Every set of s(s £ m) independent
parameters in B generates a subgroup of order S = p°. Let o =
(Bo, Beyy -+ 5 Big_,) be a vector of 8§ = p°(s < m) pre-assigned parameters,
subject for estimation and testing of hypotheses, where £, < #4; and & = 0 for
allk =0,---,8 — 1. Let {84, -+, Ban_,_.} b€ a set of m — s independent
parameters, disjoint of the set of S = p’ pre-assigned parameters. The N = p™™°
parameters in the subgroup generated by {84, , * * * , Ban_._.} are called defining
parameters. The N = p™ treatment combinations z in X are classified into
M = p™* disjoint subsets X,(v = 0, --- , M — 1) called blocks, relative to a
given set of m — s independent defining parameters, according to the system of
linear equations:

m—1

(2.8) > iNja, = a (mod. p) forallk =0,---,m —s—1
=0

where Ba, = (Noygp , Mz, *** » Am1,a)- Bvery x = (4o, -+ + , tm—1) Which satisfies
(2.8) for a given (m — s)-tuple (ao, *** , Gm—s—1), where az = 0, -+, p — 1,
is contained in X, with v = D_m=a " ax p*. For the objectives of the present study
we can assume, without loss of generality, that the vector of pre-assigned param-
etersisa’ = (B, Br, - -+ , Bs-1), and that the subgroup of defining parameters
is generated by the parameters {85, Bes, - - - , Bv—s}, representing the (m —.s)
“main effects” which are not in a. In Section 5 we show how to treat the general
case. Relative to this set of independent defining parameters, the blocks of treat-
ment combinations are:

m—1 )
(29) X,= {x: if £ = (o, ,m)andt = ) 4;p thent= v(mod.pm_s)} .
=

Let Y(X,),» =0, --- , M — 1, be a vector of random variables associated with
a block X, ;ie., Y(X,) = (Y (2us), Y(Z140s), - -+ , Y(Tw41ys—1)). The statisti-
cal model is

M-1
(2.10) Y(X,) = (C®)a + Zl e (CN) By + &

forallv =0, --- , M — 1; where: ‘

(1) Buwy(u =1, -+, M — 1) designates the vector of parameters alias to the
components of o with respect to the defining parameter B.s, i.e., Blw =
(Bus , Bryus, =+ 5 Bty s—1)-

(ii) e, is a random vector, independent of X, , with Ee, = O and ¥(e,) = I
forally =0,---, M — 1.

Denote by 8 the vector of all nuisance parameters, i.e.,

B = (Bw,Baw,  »Bu-).
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Then, the statistical model (2.10) can be written in the form

(2.11) Y(X,) = (C®)a+ (H,)8+ & forallv =0,---,M — 1
where (H,) is a random rectangular matrix of order S X (N — 8), given by:
(2.12) (Hy) = (e, 52", -+, esu—n) ® (C').

3. The class of unbiased linear estimators. In the sequel we confine the dis-
cussion to factorial systems of order 2™. As before, let N = 2™, M = 2™ *(s < m)
and S = 2°. We prove first that unbiased estimates of o can be obtained only
under a randomization procedure with equal probabilities, i.e., £ = (1/M)1%,

TareorEM 3.1. Let Y (X,) be a random vector associated with a block of treatment
combinations X,(v = 0,---, M — 1) chosen with a probability vector
£ = (k, -, Eu). Then EY(X,) is independent of the vector of nuisance
parameters B if, and only if, £ = (1/M)19".

Proor.

(i) Let £ = (1/M)1? then according to (2.11) E;Y(X,) = (C*®)a +
(1/M) > 5! (H,)B since e, is independent of (H,) and Ee, = 0. Moreover,
from (2.12) it follows that

M~—1

M—1 M—1 M—1
Z() (Hv):B = (Eo cﬁll)’ Z_(:) cgl)) "t Z(:) ngﬁ_l)) ® (C(S))B = 07

since 1*°(C*) = (M, 0,0, ---,0).

(ii) If Ey(H,)8 = 0 then it is necessary that Y .o’ &cen’ = 0 for all
u=1,---, M — 1;since 8 is arbitrary and (C*®) non-singular. This necessary
condition can be written in the form £ (C*’) = (1, 0,0, ---, 0) for all prob-
ability vectors £ Multiplying both sides, from the right, by (C**)" we arrive
at the necessary condition: Mt = (1,0, ---, O)(C(‘?)' =(1,1,---,1).Or,
equivalently, £ = (1/M)1%,

The randomization procedure in which each block X, is assigned probability
1/M will be denoted henceforth, by R.P.I.; and the subscript ¢ will be omitted
from expectation and variances operators. The following theorem characterizes
the general structure of all linear unbiased estimators with R.P.I.

TurorEM 3.2. Every linear unbiased estimator of a with R.P 1. is of the form:

(3.1) a(y, Fo) = (1/8)(C™)Y (X)) — (H)vl + (F)Y(X,)

forallv =0, -« , M — 1. Where v is any fized vector of order N — S; (F,) is an
S X 8 matriz, independent of e, with the properties:

@) E(F,) = (0)

(ii) E(F,)(H,) = (0).

Proor. To prove that conditions (i) and (ii) are sufficient for the representa-
tion (3.1), we substitute in (3.1) expression (2.11) for Y (X,). We arrive at
the form

a(y, Fo) = a + (1/8)(C?)'(H)(B — 7) + (F)(CP)a

(32) ON
+ (F))(H,)B + [(1/8)(C™7)" + (Fu)le.
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Hence
33) E{a(y,F)} = a+ (1/8)(C)YE{(H,)} (B —v) + E{(F)}(C®)a
' + E{(F,)(H,)}8 + E{[(1/8)(C®) + (F,)} Eld.

To prove that Conditions (i) and (ii) are necessary for the representation (3.1)
let & be any linear unbiased estimator of «, and write:

(34) a=f,+ (4,)Y(X,) forallv =0,---, M — 1
where f, is a random vector of order S X 1, (4,) a square random matrix of
order 8 X S. Both (4,) and f, may depend on (C*®) and on (H,) but not on
Y(X,). Since (C*®) is non-singular we can write:

(3.5) (4,) = (€Y + (F,) forallv =0, ---, M — 1.
By substituting (3.5) in (3.4) we get:

i = fv + [(C\S))_l + (Fv)]Y(Xv> = (I/S)(C(S)),Y(Xt) + fv + (Fv)Y(Xv)-

From the non-singularity of the matrices (C™) and (C'®) it follows
that to every set of M vectors {fo, ---, fu_i) such that ) a5' f, = O cor-
responds a unique vector v in E®¥™® which satisfies the system of equations:
—(C*™YMH,)y = f, for every v = 0,---, M — 1. The condition
that Y 25" f, = 0 is necessary for the unbiasedness of &, since

E(1/8)(C*®)'Y(X,) = a.

Otherwise Ef, will be a linear function of « and 8. Hence the form of an unbiased
estimator is reduced to (3.1). Furthermore, since

E(1/8)(C)Y(X,) — (Ho)v] = o,

a necessary condition for the unbiasedness of (3.1) is that E(F,)Y(X,) =
Substituting (2.11) for Y (X,) we get the necessary condition:

(3.6) E[(F.)(C*®)a + (F,)(H,)B] = 0.
According to (2.12) we can write Condition (3.6) in the form:
(3.7) [E{(F.,)(1,¢37, -+, etin) ® (C)}] ( ) = 0.

Since (a, B) is an arbitrary vector, a necessary condition for (3.7) is:
E[(F.)(1,¢4", -+, eslii—n) ® (C*)]
= [E(F,)(C*®), E(F,)(H,)] = (0)

which is equivalent to Conditions (i) and (ii).
A subeclass of linear unbiased estimators of a with R.P.I. is the set of all a(v, F,)
with (F,) = (0) forallv = 0, --- , M — 1. These estimators are given by:

(39) a(y) = (1/S)(C)Y(X.) = (H, ye B9,

(3.8)
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We notice that the class of all a(y), v ¢ EY =9 constitutes the set of all para-
metric solutions to the normal equations:

[(1, 01(1111)’ cre, Cf()ﬁz—l)) ® (C(S))]l[(l, 01(1{"); Tt C«Eﬁ;—l))

3.10
(810) ®<C<S)>1(g)=[<1,cs¥>,-. L0y ® (CY(X.)

when substituting v for the unknown B. The estimators &(y) are called, there-
fore, conditional least-squares estimators (c.l.s.e.). In the next section it is proven
that the class of all c.l.s.e. estimators, &(vy), is complete. That is, if &(y, F,) is
not a cls.e. ((F,) # (0)) and if (&) denotes the variance covariance matrix
of & then X(a(y, F,)) — T(a(y)) is positive definite.

4. The completeness of the class of conditional least-squares estimators.
The following lemma is required for the derivation of the variance-covariance
matrix of a linear unbiased estimator &(y, F,) under R.P.I.

Lemma 4.1. Let a(v, F,) = a(y) + (F,)Y(X,) be a linear unbiased estimator
of a under R.P.I. Then,

(4.1) B(C®) ™ H.)(B — NI(C®)a + (H)BI(F.) = (0)

for all o, B and ~.
Proor.

E(C®)7(H,) (8 — )(C*)a + (H,)BI' (F.)’
(4.2) = E(C'®)™(H.)(B — v)a'(C®)'(F,)’
+ BE(C®)(H.) (8 — v)B (H,)'(F.)'.
According to Condition (ii) of Theorem 3.2, E{(H,) | (F,)} = (0). Hence
E{(C®)NH.) (B — 1) () (7))
=E((C*)TE{(H,) | (F.)}(8 — v)a'(C®)'(F,)"} = (0)
for all @, B and . It remains to show that the second term in the right hand
side of (4.2) is (0). Let
(K) = (F)(H)B(8 — v)'(H.)' (¢

(4.3) S5 o oo

= Zl Z Couy Couy (Fv)(C(S))B(ul)(.B - 7)2u2>

uy=1 ug=1
where 8 = (B , ﬂm y Bu—n). By virtue of (2.7), if u, = ;-':‘f“l iij
and us = Xm0 1 472°(4;, 45 = 0,1) then es) cf,fz) csul , for every v = 0, ,

M — 1, whereus = g " ”2’ and 7 = ¢; + 4; (mod. 2) for everyj = 0, -
m — 8 — 1. Denote us = w; @ 2. Thus,

M—-1 M-—1

(4:4:) (K) Z Z sz%i@uz(FV)(C(S))ﬂ(ul)(B - 7)2“2) .

ui=l wugs=1
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If us @ uy = Othencliiou, = 1forallv =0, --- , M — 1 and B{c{ou,(F.)} =
E{(F,)} = (0) by Condition (i) of Theorem 3.2. Furthermore, if u; ® us # 0
then E{c{ i ou, (Fy)} = (0);since by Condition (ii) of Theorem 3.2,

B{(F,)(H.)} = B{(F)[(, -+, %) ® (C)] = (0).
Hence, E{(K)} = (0).

We turn now to the derivation of the variance-covariance matrix of a linear
unbiased estimator under R.P.I.

TaroreM 4.2. Let a(y, F,) = (1/8)(C®)'[V(X,) — (H,)v] + (F,)Y(X,)
be any linear unbiased estimator of a, under R.P.I. Then, its variance-covariance
matriz $(é(y, F,)) is given by:

2(aly, F.) = o’[(1/8)I° + E(F,)(F.)']
(4.5) + (1/8HE{(C) (H,)(B — v)(B — v)' (H,)'(C*?)}
+ E{(F)[(C*®)a + (H,)BI(C™)a + (H,)BI'(F,)'}.

Proor. Denote by ¥(a(v, F,) | (H.), (F,)) the conditional variance-covari-
ance matrix of a(y, F.), given (H,) and (F,). According to the relationship of
the total variance to the conditional variance, we write:

ey, 1)) = E{3(a(y, F2) | (H), (F.)))
+ I(Ela(v, F,) | (Hs,), (Fo)}).
The conditional variance-covariance matrix of &(vy, F,) is given by:
$(aly, F.) | (H,), (F.)) = E{[(F,) + (C*)7]
< ed[(F,) + (C)7T | (F.)
= o1(1/8) I + (F.)(F.) + (C?)7(Fy)'
+ (F)(CP)7].
Thus, since E{(F,)} = (0) we have,
(48) E{¥(aly, F.) | (H,), (F.))} = 11/ 4+ BE{(F,)(F)}).
The conditional expectation of &(v, F,), given (H,) and (F,), is
49) E{a(v, F,) | (H,), (F.)} = a + (C®)7(H,)(8 — ¥)
+ (FHUC™)a + (H.)BI.
Since a(y, F,) is unbiased, we have:
I(Efaly, F.) | (H,), (F.)})
= E{[(C®)(H,) (B — v) + (F)I(C?)a + (H.)B1
JCYTHH) (B =) + (FH(C®)a + (H)AI'Y
= (1/8HE{(C®) (H,) (8 — 7)(8 — v)'(H.) (C®))
+ E{(F)(C?)a + (H,)BI(C®)a
+ (H.)BI'(F,)'} + B{(A)} + E{(4)"}

(4.6)

4.7)

(4.10)
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where (4) = (C®)(H,)(B — v)[(C*®)a + (H,)B]'(F,)’. Finally, according
to Lemma 4.1, E{(4)} = E{(4)"} = (0).
CoOROLLARY 4.2.1. The variance-covariance matrix of a c.l.s.e., &(vy), s:
2(a(y)) = (*/8)I?
(4.11) + (1/8)E{(C®) (H.) (B —v) (B — v) (H,) (C®)}

= (DI + T (B =B =) w

ie., if &(y)(¢ =0, ---,8 — 1) denote the components of &(y), then
M—1
cov (di('Y)) &J(‘Y)) = 0_2/S + ;1(6:'+u8 - 'Yi+u8)2y lf 1, = _7
(4.12) .
= uz_; (Bitus — Yitus) (Bitus — Yitus), 75 J.

CoroLLARY 4.2.2. If a(v, F,) is any linear unbiased estimator of a, under
R.P.I1., with (F,) # (0) then £(a&(y, F.)) — T(a(v)) is positive definite.
¥ Indeed, according to (4.5) and (4.11), the difference of the variance-covariance
matrices of &(y, F,) and &(y), with the same v, is

$(a(y, F.)) — 3aly) = IB{(F,)(F.)"}
+ E{(F)[(C)a + (H,)BI(C™)a + (H,)BY (F,)},
If (F,) # (0) then z'¢*(F,)(F,)'z = o [(F,)z)[(F,)z] > 0forall z # 0. Hence
o'E{(F,)(F,)’} is positive definite. Moreover,
FE{(F)(C)A + (H)BI(C)a + (H,)BY (F.) '}z 2 0

for every z ¢ 0.and every « and 8. Thus (4.13) is positive definite. This estab-
lishes the completeness of the class of c.l.s.e.
5. The general least-squares estimators for R.P.I. Let
B(O) = (ﬁO’ ﬁtx y " ﬁts-l),’ b < tk+l(k = ]-) ) 2" — 1)
be a vector of any S = 2° pre-assigned parameters, and let {84, - -, Bin_,_i}
be any set of (m — s) defining parameters independent of the pre-assigned ones.
Let{X,:v =0, --- , M — 1} be the corresponding M = 2™ blocks of treatment
combinations, constructed according to (2.8). Define by Beuy(u =1, -+ ,M — 1)
the vector of S parameters obtained by multiplying each of the components of
. ’
ﬁ(O) by B: » Le., ﬁ(u) = (ﬁo ® ﬁ: ) ﬁtl ® Bt y " ﬁtS—l ® ﬁ:) ) where
BE:u=0---,M— 1}
is the subgroup generated by the (m — s) defining parameters. If 8;, =
Mogys *** s Amer,q,) for bk =0, --- ,m — s — 1, define

m—s—1

(5.1) bow = (—1) 2o L), vbu=0,---,M—1

(4.13)
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where v = D 757127 u = 3707427 and L(d;) = D15 Mg, - Then, as
shown previously by Ehrenfeld and Zacks [4] the statistical model can be written
in the form:

M-1
Y(X.) = 2, (PR)Bw + & = (Pid)a + (H)B + &
(5.2)
foraly =0,---, M — 1
where & = B, 8 = (Bwy, -+, Ban); (P%) is a 8 X S matrix of the co-
efficients in (C™), N = 2™, corresponding to the #’s in X, and to the 8’s in o,
arranged in the standard order; and where,

(5.3) (H,) = (b51°, +++ , bita—1) ® (PX)

forallv = 0, ---, M — 1. Substituting (P) for (C*®) in (3.1), and (H,)
which is given by (5.3), we get the general representation of a linear unbiased
estimator. Furthermore, the general representation of c¢.l.s.e. is given by:

(5.4) aly) = (1/8)(PS)'V(X,) — (H,)vl, v e B9,
It is readily verified that all the theorems given in Sections 3 and 4 hold.

6. Conditional least-squares estimators with R.P.IL In R.P.IL we have to
require that the S = 2° pre-assigned parameters will constitute a sub-group since
in this procedure the pre-assigned parameters have the role of the defining ones.
Accordingly, we will assume that the pre-assigned parameters are the first 2°
~ ones. Otherwise, relabel the factors and apply a linear transformations on their
levels (reflections) to obtain it. The 8 = 2° blocks are, accordingly, the follow-
ing sets:

X = {IC 0,1 )(x1+u8) ;B)(xi) for all 7 = 0’ ] S — 17
j=0,---,8—1landu=0,---,M — 1}.

Let Y5, = Y(2iyjs), (K = 1, -+, n) be the random variable associated with
the kth treatment combination chosen at random from the sth block. Without
loss of generality, let n = 1. Accordingly, the statistical model for R.P.II. can

be written as

(6.1)

8—1 N—8—-1
s ~ )
(6.2) Y. Z e + tZ; Citiist+s Brvs + €ij;

. 0 . . 2
where ¢;;; is a random variable independent of z;;; , with Ee = 0, Ee" = o

By virtue of (2.6) we have

) ® ()
(6.3) Citjist+8 = Ciry Cija,

where M = 2™°, r, = t (mod. S) and ¢;: = 1 + [¢/S]. This statistical model
can thus be written, in a matrix form, as

(6.4) Y= (C®)a+ (H)B+ ¢
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where Y is the vector of observation of order S; € is a random vector of order S
independent of the z’s with Ee = 0, Eee = o¢’I'®, and where

(6.5) (H) = ((G1)(C®), (G)(C®), -+, (Gu1)(C))
each (G,),uw = 1,---, M — 1, is a diagonal matrix of order S X 8, whose
diagonal elements are ¢’ = ¢§12 (i = 0,---, S — 1).

Replacing (H,) in (3.1) and (3.9) by (H) of R.P.IL. (6.5) we get the cor-
responding class of linear unbiased estimators, and the subclass of c.ls.e. for
R.P.II. It is easy to check that all the theorems of Section 2 and 3 hold.

7. Discussion. A complete class of linear unbiased estimators for randomized
fractional replication designs has been presented. Each estimator belonging to
this class is a conditional least-squares estimator, which can be interpreted as
the least-squares estimator for a 2° fractional system adjusted to balance for the
effect of the nuisance parameters, according to the block chosen and the informa-
tion available concerning the nuisance parameters. Indeed, the estimator
d = (1/8)(C*®)’Y is the least-squares estimator of « in a 2° = S factorial
system. a(y) = & — (1/8) (C®Y'(H,)y is an adjustment of & by
—(1/8)(C*®)'(H,)y, which depends on the block chosen, (H,), and the point
v chosen. A-priori information concerning the vector of nuisance parameters
8 may often be available. Let {m:(8):t =0, --- , N — 8§ — 1} be a set of all the
marginal a-priori distributions of the components of 8. Then &(y°), with ¢ =
E.{p} forallt=0,.---,N — 8 — 1, is a Bayes conditional least-squares esti-
mator, relative to the loss function, given by the trace of the variance-covariance
matrix of &(y). In the following paper the problem of choosing a conditional
least-squares estimator will be studied in a more general framework.
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