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1. Introduction. Limit theorems for Markoff processes and suitable functionals
defined on the processes occur in two principal contexts. The first category of
applications treats a situation where the limit process is one of the classical stable
processes. The usual approximating processes are sums of independent random
variables. A second important class of examples is that of a limiting diffusion
process of Bessel type (Section 2). Then the approximating processes may them-
selves either be of diffusion type (i.e., random walks, birth and death or bona fide
diffusion) or processes almost of diffusion type [14], [23].

In both these cases under sufficient regularity conditions we have an invariance
principle, i.e., the convergence of the processes entails the convergence in law
of functionals continuous a.e. with respect to the limit process.

In this paper our objective is to develop several limit laws for random variables
subject to conditioning on a recurrent event.

Such limit laws arise in a natural way in considering Kolmorogov-Smirnov
statistics, and other related statistics as follows. Consider the Poisson process,
U(t),t = 0, with stationary increments and EU (1) = 1. The event U (n) =
for some n is a certain recurrent event (n = 1, 2, --. ). Let N, denote the
number of recurrences that have taken place up to time n. It is well known that

t
liMpw Pr(Na/n? < t) = (2/1r)%f e dy, 0=t < o, [20] (3]
0

On the other hand, P(N, = k| U (n) = n) is just the probability that F,.(z) =
F (z) for k values of x where F, is the empirical c.d.f. of » independent random
variables each distributed according to the c.d.f., F. It follows, in particular,
from the results of this paper that
liMpw Pr(Na/n <t|U®m) =n) =1 —¢"%  0=t< =, [20]
Similarly, let M, = maxoqsn (U(t) — t), A = maxo<i<a | U(t) — t|. The
limiting distribution of M.,/n?, An/n} are well known [11]. The “conditioned”
versions involve the limits,
limpow Pr(Ma/nt < t|Um) = n), lime.o Pr(d./nt < t|Un) = n).

These, of course, are the well known limiting distributions of the one and two-
sided Kolmogorov-Smirnov statistics, n*D? , #*D,, . Similarly, instead of U (¢)

one considers the process S, = X; + -+ + X.,n = 1,2, --- | where the X;
are independent and identically distributed random variables equaling 1 and —1
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with probabilities %, 1. If N, = the number of indices ¢ for which S; = 0,
1 é 7 é n, Mn = maX1§¢§n Si, An = MaXi<i<n lS,l then P(Nzn =k I Szn = O),
PMwuw = k|8Ssw = 0), P(Asa = k| Se2n = 0) are exactly the probabilities
P{F,(x) = G.(z) for k values of z}, P{max (F.(x) — G.(z)) = k/n},
P{max |F,(z) — G.(z)| = k/n} where F,, G, are independent empirical ¢.d.f.’s
based on observations from the same population. Some of the results of this
paper specialized to this case establish limit laws for Nan/n}, Ma/(2n)}, Agn/n?
under the condition that S., = 0, thus providing new proofs of the well-known
limit laws for Kolmogorov-Smirnov statistics which arise from the comparison
of two empirical c.d.f.’s.

Let X (t), t > 0 be a Markoff stochastic process whose state space is the real
line. We will consider two cases. The first is the situation where X (¢) is a process
of a sum of independent and identically distributed random variables in discrete
time. In this circumstance we adopt the traditional notation and write X (n) = Sa
where

(1) So=0,8%=bt+&+ - +&, n=z2l

and £; are independent identically distributed. In order to obtain nontrivial limit
laws for the process Sp.g suitably normalized we will assume that {£;} belongs
to the domain of attraction of a symmetric stable law of index ¢, 1 < « = 2
and E(¢) = 0. It is established in [19] under the conditions stated that the
processes

@) Z" () = Swa/n""

converge to a symmetric stable process of index « (as n — « ) and the invariance
principle holds.

Consider now the special case where £; are integer valued non-lattice random
variables. The conditions 1 < o =< 2 and E(¢;) = 0 imply (see [2]) that the
process Siag is null recurrent and in particular the event S, = 0 for some n = 1
is certain recurrent. Henceforth whenever dealing with the case of (1) we assume
that the convergence in (2) prevails and that &; are integer valued non-lattice
random variables.

We introduce the following random variables

(3) Mn = MaXo<k<n Sk N M: = {max 0<k<n S}c | Sn = 0}

where the last notation signifies that we are considering the maximum variable
restricted to the sample paths where S, = 0. (The subsequent notation is to be
interpreted analogously.)

M} = {maxocksn Sk | S > 0,k =1,2, -+, n}
An = maXo<k<n |Sk|

AL = {maxo<i<a [Si| | S» = 0}

Y. =n—max{k:S, =0,k=0,1, -, n}

N, = Numberof S; =0 (k=1,2, - ,n)

N% = {Numberof Sy =0,k=1,---,n| S, =0}.

(3)
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It should be emphasized, to be precise, that the * random variables are defined
on a different measure space than the unstarred random variables.

It is proved in [5] and independently in [12] under the hypothesis stated above
that

4) limpaew Pr{Y,/n = u} = Fiq.(u)

where F.(u) represents a one parameter family of distributions whose explicit
form is

(5) P = 270 [ Cei(— o an

™
Moreover, the existence of
(6) limpe Pr{M,/n"'* £ x}

is demonstrated and the limit distribution is identified in terms of a double
Laplace transform in [6]. Also limit laws for A, and N, are developed respec-
tively in [19] and [3]. These assertions can be deduced partly with the aid of the
general invariance principle [18]. Our present aim is to analyze the nature of the
limit laws for My , A% and N . Actually the emphasis of this paper is more on
deriving relationships amongst the limit distributions of the variables (3) rather
than on proving their existence. Nevertheless in most cases, we also obtain the
existence of the limiting distributions.

In addition to elaborating the program of the preceding paragraph for the
case of sums of independent random variables we will also develop the corre-
sponding results for the case where the approximating processes are of diffusion
type. For simplicity of exposition we assume that X(¢), ¢ > 0, X(0) = O is a
birth and death process on the integers; analogous arguments and constructions
apply in the case of random walks on the integers or diffusion processes on the
line. These processes are characterized as those Markoff processes on the line
whose path functions are “continuous’ (see [8] and [17]).

A birth and death process is a stationary Markoff process whose state space
are the integers and whose transition probabilities P;;(¢) satisfy the order re-
lations

P;t) =Nt + o) j=it+1
@) = ut+ o) j=i—1
=1l— Qi+ w)t+ot) j=1

where N\; and p; > 0 (¢ = 0, £1, &2, 43 . .- ). In the one-sided case, u; = 0,
7 < 0 and the relevant state space reduces to the nonnegative integers.

It is proved by Stone [23] that the only non-degenerate limit processes that
arise by renormalization, i.e. lim,,., ¢ "X (g(c)t) = Z (), t > 0 are necessarily
generalized Bessel processes (see Section 2). The existence of the limit entails
that \; and u; possess growth properties of special algebraic structure and then
g(c) = ¢"L(c) where L(-) is a slowly varying function (see also [24] and [15]).
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More specifically, if

Ttn ~ En"", Ten ~ B
@8) n— o
M)~ O o) T~ O
where
T =1 = NoAr -t A o = MOMLC fent
= g = e SR e S i
’ B g " AciAg * ¢ A

and the C’s, D’s, 8’s and 4’s are positive constants. In order to avoid technical
complications and the presence of degenerate distributions we will henceforth

assume 3 = B; and v = v;. Then
9) lim,.. ¢ "X (%) = Z(t)

where @ = 8 4 v. (The hypothesis (8) can be generalized allowing the introduc-
tion of slowly varying functions as multiplying factors and a corresponding ver-
sion of (9) is obtained; see [23]. All the considerations of this paper carry over to
this more general setting.) The process Z () is a diffusion process on the line in
the sense of Ito and McKean [7] whose infinitesimal operator is of the form

(10) Uf (@) = D.D:f ()

where n(z) = E|z|"/v and £(z) = C|z|?/8 (see [23] and also [24]). Such processes
are labeled Bessel diffusion processes for reasons indicated later.

Henceforth, whenever we deal with the case (7) we assume the relation (8)
and hence (9) holds. Under these conditions Stone also establishes the validity

of the invariance principle.
We introduce analogous to (3), the variables

(11) M@, M*@®), M+ @), A@®), A* @), AT@), N@®), N* @), Y (t)

defined in terms of the process X (¢) in the obvious way, for example (interpreting
the notation as indicated earlier)

M* () = {supos. <.z (r) | X (t) = 0}, M (1)
= {supog,<:2(r) | X(r) 20,0 = 7 = ],
Y(t) =t — max (r]| X(r) = 0), ete.

Our analysis concerning (11) is done analogously to that of (3). In particular
one of the principal results of this paper is to point out distribution relations
amongst the unconditioned variable, the associated conditioned variable and an
appropriate arc sin law.

The results are elaborated for the two cases set forth above (sums of inde-
pendent random variables, and diffusion processes), although it will be apparent
to the reader that many of the corresponding results should be forthcoming
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for any sequence of approximating stochastic processes attracted to either a
stable process or a Bessel type diffusion process.

We summarize briefly the contents of the paper. In Section 2 we develop vari-
ous relationships amongst the distribution functions of the limit laws for the
variables (3) and (11). Some extensions are indicated in Section 3. The actual
problem of the existence of such limit laws is discussed in Sections 3 and 4. The
nature of the limit law for the conditioned occupation time of a half line is de-
scribed. Moreover, the nature of the limit laws for random variables of the type

My, = {maxo<i<pm Sk | Su = 0}
(12) Nyo = {N,| S, = 0}
Yoo = {Yen| 8. =0}

where p < 1is given. Finally, a brief discussion of the limit laws for joint random
variables amongst the variables (3) is also given.

2. Relationship of conditioned limit laws and standard limit laws. This section
is devoted to a discussion of relations amongst the limit distributions of certain
unconditioned random variables and the same random variables conditioned by a
recurrent event. The examples of (3) and (11) are typical

A. Conditioned occupation time random variable. We first restrict attention to
the process (1) and assume for simplicity of exposition that the characteristic
function C (t) = E (¢"***) satisfies the property, as ¢t — 0,

(13) Ct) ~1—Dlt)*, 1<a=2D>O0.

We may deduce that the convergence of (2) is valid and also relation (4)
holds [19]. In other words the process S, belongs to the domain of attraction
of the symmetric stable process of index «. Moreover, it is known that
limye Pr {N,./Dn’ < 2} = G5(), 6 = 1 — 1/a, [3], where G; (z) is the Mittag-
Leffler distribution whose Laplace transform is

| " ™ Gy () = g% F—((l‘:)ak) .

Our immediate aim is to evaluate the limit lim,.., Pr {N,/Dn’ < | S, = 0}.
The key to this analysis is the obvious relationship,

(14:) Nn = Nn—Yn .

Using (14) and the fact that the conditional distribution of N, given that
Y./n = u coincides with the conditional distribution of N, given that
S[n(1_u)] = 0, we have

1
PI’ {Nn é am"D} = £ Pr {N[n(l_u)]

(15)
< 20D | Sty = 0} dy Pr {Y, = nu}.
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Here [n (1 — u)] denotes the smallest integer =n (1 — ). A formal argument on
behalf of (15) proceeds as follows. By the law of total probabilities, we have

1
Pr {N. < 2n’D} = fo Pr {Nnauy < an°D | Ya = nu} du Pr {Vs < nul.

But
Pr {Npa-wy = xn“D[ Y, = nu}
_ Pr{Nuwa-wn 2n’D, Stua—wy = 0,8 # 0([n(1 — w)] <7 < n)}
Pr {Spma—w; = 0,8 # 0([n(1 — w)] << =n)}
By the Markov nature of the S, process this expression becomes
Pr {N[n(l_u)] = xnaD I S[n(l—u)] = 0} Pr {Sa #0; ([n(l - u)] <t = ’ﬂ) |S[n(1—u)] = 0}
Pr{S;#0;[n(1 — %)l <7 = n|Snae-w =0}

= Pr {Npwa-w1 = 20°D | Stma—un = 0}.

The identity (15) clearly obtains by virtue of the last relation.
Assume now the existence of the limit

(16) liMpoe Pr{N.o/Dn’ < 2| 8. = 0} = G5 ().
(This will be proved in Section 3 under appropriate conditions.)
Passing to the Laplace transform in (15) yields
1
(17) en(s) = ](; ¢}kn(1—u)](s(1 —_ u)a) d, Pr{Y, = nu}
where g (@) = E (™), ok (s) = E@ "™ | 8, = 0).
We recall the fact (see (4)) that under the conditions stated
limg,e Pr{Y./n < u} = Fis(u), 1—6=1/a

Proceeding to a limit in (17) leads to the relation

(18) ols) =27 [ "1 — )P — ) du §> 0

™

where ¢ (s), ¢ (s) are the Laplace transforms of G;(u) and G5 (u) respectively.
We can write (18) equivalently in the form

(19) Gi(@) = B2 [ g (2 )t - )

™

Let N and N* denote random variables with Laplace transforms ¢(s) and
¢ (s) respectively. We may compute the moments from (18). This yields

rl r sin o R r 1 .
m=E’((N))= - E((N))lua(l—-u)(ﬂ) i

which simplifies to E((N*)") = r!IT'(8)/T (¢ + 1)).
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The distribution function of the variable N* can now be identified and indeed
a direct computation of the moments will verify

(20) GEz) = T(1 + 5) fo " £ dGy(E).

We may invert the relation (18) and express ¢ in terms of ¢. This amounts,
apart from a change of variable, to the Abel inversion formula. Thus, an obvious
change of variable in (18) and some simple manipulations produce ¢(s’) =
(sin w8/7) [0* (0°) (s — v) ™" db.

The Abel inversion formula ([26], p. 40) yields

(21) F = T [ o) (0 — 8 ds.

sin 78 dv Jo
By the same devices, the formula (19) can be inverted, thus expressing G5
explicitly in terms of G .

We summarize the preceding results as follows.

THEOREM. Suppose that {£.} is a sequence of independent and identically dis-
tributed random variables, S, = & + - -+ + &, , and E (¢"**) ~ 1 — D|t|* ast — 0,
(I < a=2,D>0).Let N, denote the number of Sy equal to 0,k =1, --- , n.
Then

limp.e Pr {N,/Dn’ £ 2|8, = 0} = T'(1 + &) foxédGs(Q,

assuming that this limit exists.” G5 (z) is the Mittag-Lefller distribution whose Laplace
transform is [§ ¢ ™ dGs () = Do [(—8)*/T (1 + 6k)],and 6 = 1 — 1/a.

We may establish the relationship (18) also in the case where the underlying
process is of type (7) and satisfies the conditions (8). It is proved in [9] subject
to these stipulations that the recurrence distribution Fy (¢) of the zero state
satisfies

(22) 1 —Fy(t) ~A/E t— o

where 6 = 8/ (8 + v) (see the notation of (8)).
It is also known [3] (cf. [9]) that

23) lim,., Pr (N (t)/Af < z) = G5(z)
and
(24) lime,e Pr{Y (¢)/t < u} = F1_s(u).
The same reasoning as above shows that
(25) lim;,o, Pr{N@t)/Af < 2| X () = 0} = G5 (z)

and of course (23), (24) and (25) are connected by the Formula (19).

2 In Section 3 sufficient conditions for this limit to exist are given which cover many
cases of interest. See also the discussion in Section 4.
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The limit law established for the conditioned variable of N (¢) is considerably
general to the following extent. Consider any irreducible Markoff chain U ()
(discrete or continuous time) whose state space are the integers. Let Fx (t) be
the recurrence time distribution of the zero state and suppose (22) holds for
1 — Fy(t). Let N:(t) be the occupation time of I, during the time interval
(0, ¢). It is known [3] that (23) holds provided that A is replaced by an ap-
propriate constant (essentially a multiple of the stationary measure of the set I).
A slight extension of the previous argument again proves (25), assuming this
limit exists. We need not enter into details, but the argument of Section 3 based
on a consideration of moments establishes (25) in an important special case.

B. Conditioned maximum random variable. We begin with the case of the birth
and death process (7) under the hypotheses of (8). As remarked in the introdue-
tion, this case is typical of the situation where the underlying process is of dif-
fusion type.

Applying the invariance theorem, we conclude that the joint distribution of
{¢ M (c't), ¢ X (c"t)}, (@ = B + ) converges as ¢ — » to the joint distribu-
tion of {M 2 (t), Z (t)} where M () = maxo<,<: Z (). In particular, we conclude
that the conditioned distribution law

(26) PriM@)/t"" <z|X(@¢) <0} = H,(z)

converges to the distribution law Pr{M,(1) = z|Z(1) = 0} = H (z).
Now consider the obvious relation U@)M () = M@ — Y (¢))U(t) where
U((t) = 1if X (t) =< 0 and zero otherwise, valid because of continuity of paths.
This relation expressed in terms of distribution functions becomes

Pr {M(t) < 2" | X(t) < 0}
= folPr (M(t) £ ot | Y(t) = tu, X(t) <0} d, Pr {Y(t) < tu}.

But
Pr {(M(t) < «t"|Y(t) = tu, X(t) £ 0}
_ Pr (M@0 — w) < 2, X1 — w) = 0,X(r) <0;¢(1 —w) <7 <t
Pr{X@t(1l—w) =0,X() >0l —w) <7<t}
and by the Markov property this reduces to
PriM@d —w)) <t/ | X(@t(1 — u)) = 0}.

Combining, we have

Pr {M(t) £ 2" | X(t) £ 0}
(27) fl 1/a
= Pr{M@tQ — u)) < ot | XA — w)) = 0} d, Pr {Y () < tu}.

We postulate the convergence as t — « of
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Hi@)=Pr{M@®)/t"" <2z|X({t) =0} to
PriM,(1) £z|Z(1) =0} = H* ().

(Conditions under which the existence of the limit holds will be given in

Section 4.)
Now following the method of Part A of this section based on the relation (27),

we obtain
. 1
(28) H(z) = Smw’fs /0 H* <(1_:”MT) w1 — u)*™ du

where H (-) is the distribution function referred to above and § = 8/ (8 + v),
and ¢ = B8 + v. Formula (28) can be inverted along the lines of (21). This
expresses H* explicitly in terms of H.

We next turn to the question of evaluating and establishing the existence of
the limit ({ — o) of the quantities

(29) PriM@) 2| Xu) 20,0 =<u=t.

The analysis of (29) is quite simple. We convert the state 0 into a reflecting
barrier and consider the associate birth and death process on the non-negative
integers. Let X' (¢) represent this new process and M*(t) the corresponding
maximum variable. A little reflection shows that

PriM() <2t | X(u) 20,0 u=t
=Pr{M*(t) < "' = Hf ().

The asymptotic behavior of the coefficients in the X7 (f) process obviously
satisfy 7 ~ mn ~ En"7, (\rh) T~ 0nf, (n— ).

According to [24], we know that the process X (t) = ¢ Xt (c"t) converges to
a diffusion process Z* (t) on [0, «) with a reflecting regular boundary at the
origin and infinitesimal operator given by Af(x) = D,D:f(x), * > 0 where
£(x) = Cz*/8; n(x) = Exz"/y. The invariance theorem prevails (see [23]) and
the limit in (80) is the distribution function of the maximum

(1) Mz+(1) = maxo<i Z+(t)~

An explicit expression of the distribution law of (31) can be determined in the
following way. Let T, be the first passage time starting from the origin of reach-
ing z > 0 for the diffusion process Z *(t). The Laplace transform of T, is identi-
fied in [9] (see also Ito and McKean [7]) as the reciprocal of the Bessel function

(27a)

(30)

0

Ii(s) = > [T(1 — 8)/riT(r + 1 — 8)](CDs/a’)’

r=0
where 8 = B8/(8 + v), a = B + v. The familiar relation Pr{Mz+(t) = =}
= Pr{T. < t} serves now to compute the probability law of M z+ (¢).
Consider the suggestive relation

(32) M) =max (Mt —Y@©), UMY @)}
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This expression is, of course, not to be interpreted literally since some of the
random variables are defined on different probability spaces. The identity (32)
is intended only to motivate the meaningful relationships involving the cor-
responding distribution functions of these variables.

A rigorous derivation of the corresponding distribution function identity for
(32) proceeds as follows. With the aid of the law of total probabilities and con-
ditioning on the values of ¥ (¢), we obtain

(32a) Pr{M(t) < t'z} = fo 1 Pr{M® < "z | Y() = tu} d Pr{Y () < tu}.

But, the Markov property yields (compare with (15) and (27))
PriM@) <t | Y () = tu
=Pr{X(t) SO Pr{M@E(l —u) <2 |X¢tA —u) =0}
(82b) + Pr{X @) >0} Pr{}M (1 —w) = £ | XL —u)) =0}
X Pr{M(tu) < 2| X0) =0,X(r) > 00 < 7 < tu)}.

We insert this last formula into (32a) which furnishes the desired expression.
Referring to (27a), the convergence stated by (31) and letting t — «, we
obtain

Pr {M;(1) £ a}
(33) _ sinor /01 7 < x ) I:)\ + 1 —nE (gﬁﬂ w1 — u) ™ du

™ 1 — wylie
where H*(z) = Pr{M,(1) £ x|Z(1) = 0}, H" (z) = Pr{M,+(1) < 2} and
A=lime, Pr{X(t) <0} =Pr{Z(1) £ 0}.

The proof of the existence of lim,., Pr {X () < 0} = X is simple and its value
can be computed as follows. Let 5 be the sojourn time of the non-negative axis
starting from state 1, i.e., 7 is the random variable equal to the first passage
time from state 1 to —1, whose distribution function is denoted by Fy_,(t).
Similarly let { denote the first passage time from state —1 to state +1. It is
proved in [9] that

1 —F @) ~CT/8 t— o
1 —=F_ @) ~C /¢

for an appropriate pair of constants C*, C~ > 0. A standard renewal argument
shows that lim,, Pr{X () < 0} =X = C /(" + C).

The preceding analysis exhibited relations of certain limit laws pertaining to
the maximum variable when the underlying process is of diffusion type. Specifi-
cally, we had focused attention on the case of birth and death processes for ease
of exposition. We now turn to examine the corresponding versions of these
theorems where X (n) is the process (1) obeying the restrictions (13).
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If the summands #; obey the property that Pr{f; < —2} = 0 (recall that
£; are integer valued), then the paths S, (w) are “continuous” in movement to
the left. In this case the arguments leading to (28) apply mutatis mutandis.

This situation is only possible if « = 2 and then S is in the domain of
attraction of the Brownian motion process. The expression (28) becomes

Pr{M,(1) < z|Z(1) £ 0}
(34) = o [ Pr ) £ 541 20) = 00— w7 au

and Z(t) is standard Brownian motion. Since the left hand side is (2/x)*-
IK; ¢4t an 2i/rznmedia’ce verification shows that Pr{M,(1) = z|ZQ)
=0 =1—-¢""

The methods employed above in deducing (34) depend on the validity of the
convergence.

(35) limu, Pr{M,/Dn* < 2|8, =0 = Pr{M,1) <z|Z(1) = 0}

which may be established subject to some suitable mild restrictions with the aid
of the invariance principle. The formula (34) can also be derived readily by
direct considerations of Brownian motion.

In the general case where £; has finite variance ¢” and therefore Sp.n/on' con-
verges to Brownian motion we would expect (35). Undoubtedly the invariance
principle also applies to the tied down approximating process (Siusent|S. = 0)
which converges to Brownian motion Z(7), 0 = 7 = 1 conditioned so that
Z (1) = 0 and then (35) obtains by considering the maximum functional. An
example of this sort was studied in [4].

Returning to the case of (13) and 1 < a < 2, we postulate that

6) limue Pr{M,/Dn'® < x| 8. = 0} = Ri @) )
limpoe Pr{M,/Dn"* < 2| S: #0,i=1,---,n} = Ro(x)
both exist. It is known [19] that
37) limpw Pr {M,/DnV'* < @} = Ra(z).
Moreover, under the assumption (13) it follows easily that
(38) limy.e Pr{S, < 0} = 3.
Following the method of (33) we obtain the relation

Ro(x) = Tore [ (ﬁw) [1 + k. (ui,)] W1 — u) d,

12

Of course, (39) can be interpreted as a relation amongst certain functionals de-
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fined on the paths of the symmetric stable process Z°(¢) of order a. Explicitly
(40) R.(x) = Pr{Ms(l) <z}, Ri()=Pr{MnQl)=<=z|Z°1) =0},
and Ru@) = Pr{Mz(1) S 2|Z%(x) #0,0 < 7 = {).

Under some mild conditions which guarantee the existence of certain local
limit laws the proof of the convergence of (36) can be established as a conse-
quence of the invariance principle (see Section 4).

We summarize the preceding analysis in the statement of the following

theorem.
TuroreM. Let X (¢) represent a process of type (7) satisfying the conditions of

(8). Then
limeo Pr{M @) < /" | X () = 0} = H"(z),

limy Pr{M @) < at'* | X(u) 20,0=u=<tX0) =0} =H" (),
limg.o Pr{X () < 0} =2
and (33) hold.

Moreover, if S. is a process of sums of independent random variables obeying

(13) then (36) and (38) are valid.
C. Conditioned limit laws for S, . In this part we are interested in the limit

probability distribution of

(41) Pr{M,/Dn"* < x| M, > M.}
where S, is the process (1). We will assume that E (¢;) = 0,
(42) limy,.. Pr {M,/Dn"* < 2} = R,(x)
and

43) limp,e Pr{S, > 0} =\ O <Aax<).

The result to be proved is the following.
TuEOREM. Assuming (42), (43) and that the limit referred to below exists, then

lim, Pr{M,/Dn"'* < | M, > M, 1} = Sa(x).

S (z) 7s a distribution function described in terms of R, (x) by relation (50) below.

The proof proceeds as follows. We introduce the recurrent event e:M, >
M,_;,i.e., we say e occurs at time n if M, > M1 . Let {p.}n=1 be the proba-
bility distribution of the time 7' of the next occurrence of the event e. The
generating function of 7' is given in [1]:

o

(44) E(z") =1 — exp <—Z%Pr {Sk > O}).

k=1

Applying a standard Abelian type argument to (44) using (43) (actually Cesard
order convergence in (43) would suffice) we deduce

(45) 1—E@") =0 —-2))L1/1 — 1)) z 11

where L(-) is a slowly varying function. The slowing varying function L (-)
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arises by the following considerations. We assert that the function

1 2 at

is slowly varying whenever lim;., a; = 0. To prove this assertion, consider

Llf(c::)) = exp <—g [(cuc; 1>k — (u ; 1>k:| 7lc-ak> (0 < ¢ fixed).

Choose k large enough so that |a;] = e for k¥ > K. Then determine v sufficiently
large so that max; <k <x | ((cu — 1) /cu)* — ((w — 1)/u)*| < e Since (cu — 1)/cu
is an increasing function of its argument and log cu — log u is bounded, we
obtain for u large enough, the estimate ¢ > < L (cu)/L (u) < ¢ verifying that
L(-) is a slowly varying function as claimed.

Now we introduce the variable

(46) U, = time elapsed since the last time e occurred counted from time n.

Appealing to the theorem of Dynkin, Lamperti [5], [12], we have
lim, .o Pr{U,/n = u} = Fi\(u).

We start with the identity:
(47) M, = Mn—U,, .

The method from here on proceeds identically to that of Part A.
If we postulate the existence of the limit

(48) limyoe Pr{M,/AnY* £ 2| M, > Moy} = Sa().
(We will discuss the truth of (48) in Section 4), then analogous to (19), we

obtain

(49) Ru(e) =S 15 ((_1_%)7) N — o da
™ 0 —_

Along the lines of (21) we can invert (49) and express S, (z) in terms of R, ().
Executing these manipulations, we obtain

(50) 8L (7)) = (——W—> % fv Ro(z™*) (v — 2)* da.

sin

It is a familiar trick to rewrite (41) in the form
Pr {M,/Dn"* < & | M, > M,_}

_ Pr {8, < aDn", 8y > 8p1,8x > Sus, **+, 8 > 0}
Pr{Xn >O,Xn+Xn—1>O,"',Xn+ e +X1>0}

= Pr{S, < 2Dn"*| 8 >0, ---,8, > 0}.
This proves under the conditions (42) and (43)
(52) limpoe Pr {8, < aDn* |8 > 0, -+, 8 > 0} = Sa(2).

(51)
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Consider now the quantity

(53) Pr{M, < zDn"*| S, = M.}.
Again we postulate (42) and (43). Clearly Pr{S, = 0} -0 (n — «) and
therefore lim,.., Pr{S, = 0} = A. We say that the event & occurs at time

n if S, = M, . Let T be the time of the next occurrence of the event & Bax-
ter [1] has determined the generating function of T':

© k
E(xf) =1 — exp (— %PI’ {Sk g O})‘
k=1

Again (45) follows and subsequently (49) and (50) (the factor L(-) may be
different but it is still slowly varying). To sum up: If (42) and (43) hold then

Pr{M, < zDn"*| S, = M,}

(54) - Y
= Pr{S, < 2Dn"*| 8 20,8 =0, -, 8, = 0}

and the limit in (54) is the function S, (z) that appears in (52).

We close this section citing the following example of the preceding theory.
Suppose @ = 2, A = $ and R (z) = (2/1r)%f3 ¢ ¥ g¢. This will be the case in
particular when £ satisfies E (£) = 0,0 < E (£’) = ¢* < «. Comparing (49) with
(34) we infer S;(z) = 1 — e_zg/z, (0 = z < o) (cf. Spitzer [22] footnote, p.
162).

D. Conditional occupation time of a half line. Let X (t) be a Markoff process
with the following structure. The states of the process are divided into two classes
I, and I_, except for one special state o. The assumptions are that occupation of
state ¢ is a certain recurrent event and if X () € I, and X (¢;) € I_, then for
some intervening time (between ¢; and #,), X ({) = o.

An illustration of the above set up arises if X (f) is a birth and death process
on the integers (or random walk if time is discrete) and then put I, = (0, =),
I_= (—«,0) and ¢ = {0}.

Let N, (¢) denote the occupation time up to time ¢ of the set I ; N_(¢) is
defined similarly. Let F (¢) be the recurrence time distribution of the state o.
We will assume throughout this section

(55) 1—F@) = Q/0)L{) 0=s<1)

where L (t) is slowly varying.
Lamperti [13] (see also Takécs [25] who treats a more general situation) has

determined all possible limit laws for
(56) N.@)/t t— o,

The class of limit distributions of (56) comprise a two parameter family which

are described explicitly in [13].
Our objective in this section is to relate the limit laws of

(67) Ni@)/t
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with those of (56) where N (¢) is the occupation time up to time ¢ of I, con-
ditioned that X (¢) = o.

The point of view is the same as before. We postulate the existence of the
limit law of (57) and determine its form. It is an open problem as to the precise
conditions under which N7¥(t)/¢t admits a limit. Presumably, the same hy-
potheses which yield results in the case (56) will work here as well.

To analyze (56) we start with the relations:

(58) Ni@® =N+C—Y@®)) +VOYE

where

V@) =1 if X@t)el,

0 if X(@) el-

and Y (¢) denotes the time measured from ¢ of the last visit to {¢}. The occupa-
tion N,(t) of state o in the time interval [0, ¢] is of the order of magnitude
£*L(t) (0 £ « < 1) and this tends to zero when normalizing by ¢ (see paragraph
A of this section). Therefore it is irrelevant whether or not we include the value
N, () in N4 (¢). If we discard occupations of the state ¢ then the realizations of
the process have the following form:

The process visits I, and I_ alternately. Let &, n1, &, 72, - - - be the sue-
cessive sojourn times spent in I, and /_ starting from state o. Since the states
I, and I_ communicate through state o, it is clear that {£}i_, are independent
and identically distributed; similarly for {5} . Let A (¢) and B (5) denote the
distribution functions of £ and 7, respectively.

We postulate that

1 — AQ@) = A/PL@) t>0
1 — B(t) = B/fL(t) 0=<86<1,4>0B>0).

(59)

This is consistent with (55) and in fact it is an easy matter to express F (t)
in terms of A (t), B (f) and the quantities p = the probability that on leaving
state o the process moves to I, (see [13]). If the asymptotic growth properties
in (59) were not of the same order of magnitude then the limit law of (56)
would be degenerate.

Under the conditions (59) it is an easy matter to show (a renewal argument)
that

(60) lim,e Pr{V({®) =1} = A/A4 + B) = \.
Expressing (58) in terms of Laplace transforms of the corresponding dis-
tribution functions, the relation becomes meaningful and since N. (¢ — Y (¢))

and Y (t)V (¢) are conditionally independent given Y (¢) (ef. (32b)), we obtain
Ye(s) = [oviacw (1 — w)EE )] dPr{Y () < tu}, s > 0, where

Yels) = B, gi(s) = BE@ | X @) = o).
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Proceeding to a limit (t — <« ) we obtain

(61) ¥(s) = Sﬁ;ﬁ fol s — w))e™ + (1 — N1 — ) du

P(s) = limee Yi(s)  ¢*(s) = limew ¥7(s).

The change of variable s(1 — u) = v converts (61) into a convolution form.
We then compute a second Laplace transform yielding

©2) B = Sm”%()[ P“‘”+(1—x>L—i>]

1 4+ 2)r
where
T _ ® —28 _ ldEﬁ(x)
(63) W) = [ et ds = | THE
and E;(x) = limeo Pr{N,()/t < z}
© - 1 dE*(x)
% — 28 % 5—1 — [}
(64) 06 = [ V@ ds = 10) [ R
and Ef (@) = limpe Pr{N,(t)/t < x| X (t) = o}.
Lamperti has explicitly determined (63) in [13]. His formula is
ldE (x) (z + 1)8—1 + 1 ; kzﬁ_l
(65) 2 -1— x 1 —2A
’ (e +1)° + 2

In the symmetric case (4 = B; X = %). On comparing (65) and (62) we deduce

¥ (2) _ fl dE3 (z) _ 2
TO®) b e+a) [+ +21

Now, if we specialize even further, set § = 1 then

Y dEf (x) _ 2
h ¢+ 2} @+ DI+ 2

whose inversion is clearly Ef (r) = z. G. Latta (private communica,tion) has
succeeded in inverting (66). He gives the formula

" 1 _ 2—8 1 1ri5 _ e—ur5 :|
() = Sl a0 [ - |
where ¢* (£) is the density function of E* ().

(66)

=2z + 1} = £l

3. Moment methods. One of the questions left open above is: What are the
exact circumstances under which the conditioned distribution of N. approaches
a limit. It seems plausible that this should take place if and only if the distribu-
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tion of N, itself approaches a limit. A full discussion of this matter will have to be
postponed to a later work.
It is possible to give a sufficient condition for the conditioned distribution of
N, to approach a limit which takes care of most examples of interest, as follows.
Consider a certain, null-recurrent event, on the positive integers. Let

U, = 1 if a recurrence takes place at time n

= (0 otherwise.

We will assume that u, = EU, behaves like a power of n for large n. In order
to arrange the constants conveniently we make the following specific assumption.

AssUMPTION L. u, ~ An" /T (6),asn— o (0 <& < 1).

One can also carry through the analysis with the addition of a slow varying
factor in the statement of Assumption I. We leave the details to the reader.

It is elementary to verify that under Assumption I, the conditioned distribu-
tion of N, converges to the distribution described in (19). To do this, we com-
pute moments as follows

EQU,+ Up+ -+ + U) /AR | U, = 1)
= kl/A"n™ Y EU,U - U,U)/E(U) + o(1)

1541<i2<--<ix =7
where the o(1) contribution corresponds to the terms of the multinomial expres-
sion for which at least one equality occurs amongst the set (i1, %, -+, ). An
induction proof on k verifies that the contribution of these terms is of smaller
order of magnitude than the sum exhibited. Next, invoking the renewal property
associated with this event, the multiple sum can be written in the form

1
AK'ax 2 E(U:;)E(Uiy—iy) -+ - E(Usy—i,_ ) E(Un—s,) /E(U.,)
MO 1<i1<ig<e - <igZn
k! dx, - - - da. .
0 | T m — ) (= e (by Assumption I)

0=m<e<- <

o dx _ T« =19 ...
T T®) o (I — )i Tk + 1) PE T

These moments agree with formula (19).

The computation goes over in the same way in a slightly more general setting.
Suppose that 0, 4, - - - , % are states belonging to the same null class in a de-
numerable Markov chain. At time 0 the system is in state 0. U is the indicator
random variable which is 1 at time n if the system is in state 7 and is 0 otherwise.
State 0 may be one of 7, - -+ , %, but the latter are distinct. The analogue of
Assumption I is that the transition probabilities satisfy PP~ wi/n'7,
(¢,7=0,4, +,1),0 <& < 1. Then for U” + -+ + U, the occupation

IIA
_
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time of 0 we have

(0) 0\ ¢
. 1 + e + Un
i B (B )

Gy oy L. Go _ 1) o= _ T(®)!
U e U0 = 1) = RO

exactly as before.

Another extension is possible as follows. Let 0 = u < X\ and let N, count
the number of times that state 0 is occupied in the time interval (un, An). Then
under the assumptions stated above

. Nunpn \| 7760 (i) _ ) k! » dx
hm,.mE«mF(a)nﬁ) W p U =1 f“ (

T T() e O — 2y
With some computations which we omit here it can be shown that this last
integral equals

kI T(8) O /e N — w1l 4 2)]de
Tk + 1) 4 TOTA — o)A — (w/NA + )20 + 2)

(67)

which displays the limiting distribution as that of a produet of two independent
random variables, one having the modified Mittag-Leffler distribution (20), the
other having density function

PEOIA —8)A— @NA+2)72A—2)]" 0=2z= A —p)/p

(This representation as the distribution of a product of random variables, of
course, is not unique.)

A direct explanation of this fact which displays some interesting ““‘conditioned
arc sin laws” can be made as follows. For simplicity, we place ourselves within
the context of the certain, null-recurrent event discussed at the beginning of the
section and we suppose that Assumption I holds. Consider the random variables

Y, = time elapsed since last recurrence, measuring from time n,

Z, = time to elapse until next occurrence measuring from time 7.

Let 0 = u < \. A straightforward computation shows that under Assumption I

Ui = 1>

_ A= dy
TOTA ~ 5 % 0 — P10 — GNA — D’

The Brownian motion version of this fact had been observed by Levy [16,
Chapter 6] for & = 1.

Now, to find the limiting distribution of N,../n’ conditioned on Uy, = 1,
by a different method from the one leading to (67), we proceed as follows.

lim,.., P <Y—" <t

Uy, = 1) — lim,., P (M <t
un un
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Nnn
B (%) o - 1)
E

—"=z,UM >dP("”<z

A—u)/p Nnn -
- ~£ << An? ) un
A—p) /p
=f E((N"“”> ﬂ=z>dp(@§z Uy = 1
0 And n un

1)
A=) /p
Nuo—uae Zun
= / (( (Zﬂ(apr ))) )U(()\—#)/)\)n = 1) dpP (u_:b Sz

0 =1)
_,_«T() O—w)/u N — w1+ 2)]dz
T+ 1)) o IrETA — oA — (/NI + )21 + 2)

as n— «©,

4. Convergence problem and related open questions. We close this paper with
some general remarks concerning the general convergence question left unsettled
for some of the variables studied in Section 2.

1. If the underlying process is of diffusion type, i.e., random walk, birth and
death or bona fide diffusion, then a direct proof can be glven for the convergence
of Pr{M () < 2£*| X ({) = 0} under the conditions (8).

We sketch the analysis for the case of a birth and death symmetric process,
ie., we assume P;; () = P_; _;(t).

The local theorem proved in [24] asserts

(68) Pr{X(t) =0} ~ct*" t— .
Now consider the joint probability

(69) Pr{M(t) = t'z,X(t) =0} = fot P(t — 7; [t'°2],0) d, P(Tis110m) = 7),

(I 1 symbolizes, as customary, the integral part of) the last resulting because
of the continuity of paths. Here, P (¢, z, y) denotes the transition function of the
underlying process and T, is the random variable denoting the first passage time
from 0 to y. It is proved in [24] (see also [9]) that T./n® converges in law (this
fact also follows by the invariance principle) and also

(70) limy,e &P (tu, /%2, 0) = p(u, z, 0)

is valid uniformly in z for each w where p is the density function of the sym-
metric Bessel process (10). Using the limit relations, (68) and (70) in (69), we
infer the convergence of lim,,., Pr{M (t) = t/¢| X (t) = 0}.

If the underlying process is a sum of independent identically distributed integer
valued random variables like (1) obeying the conditions (13) and symmetrically
distributed then the convergence of

(71) Pr{M(n) < n'*z| S, = 0}
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can be deduced as a consequence of the invariance principle for conditioned proe-
esses. In fact, it is known under the hypothesis (13) that S, possesses a local
limit Jaw of the form Pr{S, = 0} ~ ¢n"*™" where ¢ is an appropriate constant.
This enables one to prove the convergence of the finite dimensional distributions
of the random variables

S(nh]/nllaa S[ntgl/nllaa Tty S[nt,-]/nl/a h << <t

conditioned that S, = 0. Itis not too hard to show that Skorokhod’s regularity
property [19] is satisfied and so the invariance principle applies. The details of
this argument will be elaborated elsewhere.

2. The convergence problem concerning the variables of Part C of Section 2
in the case where E (&) = 0 and E (£}) = o° < « can be dealt with by standard
Tauberian arguments applied to moments using the familiar generating function
relations of Baxter [1]. The general problem is open. The convergence problem
is also unsettled in the case of the conditional occupation time variable of a half
line. However, if the underlying process is of diffusion type (8) then the con-
vergence can be established, with the aid of an invariance prineiple.

It would be worthwhile to develop the invariance principle for the general
case of stochastic processes converging to a stable or Bessel diffusion process
Z (t), tied down so that Z (1) = 0. In the case of the Bessel process (under the
conditions (8)) this probably can be done by the methods indicated in Part 1
of this section. This permits the assertion of the convergence of various func-
tionals, in particular, the existence of limit laws for the variables of Section 2,
Parts A, B and D. The analysis presented there identifies the actual limit law.
The development of the invariance principle in the case of conditioned sums of
independent random variables (not necessarily symmetric) attracted to an
appropriate conditioned stable process is open.
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