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1. Summary and introduction. Investigations in the Partially Balanced Incom-
plete Block (PBIB) designs having three or more associate classes have been
limited to the works of Vartak [14], Raghavarao [7], Roy [9], Singh and Shukla
[12] and Tharthare [13]. In this article we study the combinatorial properties,
construction and non-existence of the cubic designs exhibiting a three associate
class association scheme. The method of construction, discussed in this article,
gives a new way of arranging a p?® factorial experiment in blocks of sizes different
from p and p%

2. Definition and preliminaries. Adverting to Bose and Mesner [2] we can
define a three associate class association scheme for » treatments. The arrange-
ment of these v treatments in b blocks of size k is said to be a PBIB design (cf.
Bose and Nair [1]) if

(1) every treatment occurs at most once in a block,

(ii) every treatment occurs in exactly r blocks,

(ili) every pair of treatments which are ith associates occur together in \;
(7 = 1, 2, 3) blocks.

Let there be v = s* treatments denoted by (o, 8,v) (o, 8,v = 1,2, -+, s).
We define the distance & between two treatments (o, 8, v) and (o', 8, v') to be
the number of non-null elements in (a« — o, 8 — 8, v — 7). Let us call two
treatments to be 1st, 2nd or 3rd associates according as & = 1, 2 or 3 respectively.

Geometrically interpreting, the two treatments lying on the same axis are
1st associates, those lying on the same plane are 2nd associates and the rest are
3rd associates when the s* treatments are arranged in a cube of side s. Because
of this geometric configuration we call the above association scheme, a cubic
association scheme. PBIB designs whose treatments exhibit a cubic association
scheme may be defined as cubic designs.

For the cubic association scheme, we easily get

(2.1) m=3—1), mMm=36—-17%  n=(s—1)°
and
s —2 2(s — 1) 0
(22)  Pr= (pix) = 2(s — 1)(s — 2) (s — 1)°
(s = 1)%(s — 2)
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—

2 2(s — 2) (s—1)
Py = (ph) = 2(s — 1) + (s — 2)* 2(s —1)(s — 2)
(s — 1)(s —2)°

2.2
@2) [0 3 3(s — 2)
Ps = (pi) = 6(s —2) 3(s —2)*].
(s — 2)°

Let N = (n:;) be the v X b incidence matrix of the cubic design where n,; = 1
or 0 according as the ¢th treatment occurs in the jth block or not. The treatments
can be so numbered as to render NN’ take the form

(2.3) NN =1, x (P — Q) + E., x Q

where [, is an identity matrix of order s, K., is a m X m matrix with positive
units elements everywhere, ‘“ x”’ is the symbol for the Kronecker product of

matrices, and
P=1 x (A —B)+ E, x B, Q=1 x (B—C)+ Es; xC,
(24) A= (r =ML+ ME, B=(—NI+ B
C = — M)+ ME .
The determinant of NN’ can be obtained as popfps2ps? where
po=r+3(s—Dh+3(s—1)N+ (s —1)°N =1k,
=1+ (2s =3+ (s —1)(s — 3 — (s — 1),
pe =74 (8~ 3)A — (25 — 3)As + (s — 1)),
ps =7 — 3\ + 3o — As,
a=3(s—1), a@=3s—-1)" a=(s—1)"

It can be observed that po, p1, p» and p; are the characteristic roots of NN’
with respective multiplicities ap = 1, o1 = 3(s — 1), as = 3(s — 1)*and a3 =
(s — 1)* Since NN’ is positive and at least semi-definite, p,’s must not be nega-
tive (z = 1, 2, 3). Hence we have the

THEOREM 2.1. A necessary condition for the existence of a cubic design is that
p. =0 =123).

Cubic designs with the following parameters violate the above necessary
condition and hence are non-existing. The characteristic root with the negative
value is shown in brackets against the parameters

(1)s=3,b=12,r=4k=9,M=41=0,3=1. (p)

(i) s=4,b=064,r =18 =k, \; = 1, s = 6,\s = 5. (p1).

3. Analysis. The analysis of the PBIB designs can, in certain cases, be ob-
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tained, very elegantly, with the help of the characteristic roots and vectors of
NN’ (cf. Raghavarao [8], Tharthare [13]). In this case we shall obtain the
analysis of the cubic designs by a similar method.

With the usual intrablock model, the normal equations giving the column
vector of the intrablock estimates of the treatment effects t are

(3.1) Q = Ct

where

(3.2) Q=T-— (1/k)NB and C = I, — (1/k)NN’,

T and B being the column vectors of the treatment totals and block totals re-
spectively. '

The characteristic roots of C can be seen to be 0, ¢; = r — pi/k, 2 = r — po/k,
¢s = r — p3/k with respective multiplicities a«p = 1, oy, oy and a3 . The spectral
decomposition (cf. Perlis [6]) of C is

(3.3) C = ¢:1d1 + $24: + $:4;,
where
SA; = [sEee % I, + sEy x I, % Ey + sI, x Egzp — 3E.]
SAs = [l X B + I, x Eyy x I, + E, % I}
— 28{I, x Egp + Eu % I, x By + Epe x L} + 3L,]
SA5 = [8' s — s I % Eoe + I, x By % I, + E, x I}
4+ s{I, % Egpp2 + B x I, x By + Eape x I} — Eag).

Using Shah’s result [10] that t = (C' + aE,,)”'Q, where a is any real number,
is a solution of (3.1) and after simplification we get

b= (1/85)Qi + (1/55) (1/dy — 2/ — 1/65)(3Qs + 22 Qu + 2 Qi)
+ (1/s) (/s — 1/3) (3Q: + 2 Qu), (i=1,2,---,v)

where Z Q.; is the sum of the @’s of the treatments which are jth associates of
the 7th treatment. The intrablock analysis can now be clompleted in the usual
manner as given in Kempthorne [4]. From (3.5) we can readily find that

Var(f; — ;) = (26%/s")[1/¢1 + 2(s — 1) /d2 + (s — 1)*/sl, or
(3.6) = (20%/s")[2/¢1 + (8s — 4) /b2 + (s — 1)(s — 2)/¢s], or
= (26°/5")[3/¢1 + 3(s — 2) /¢ + (5" — 3s + 3) /8]

according as the 7th and jth treatments are first, second or third associates re-
spectively, where o’ is the intrablock error variance. The average variance of

the design is
(3.7) 26%/(s* + s + DI3/dr + 3(s — 1)/ds + (s — 1)%/¢s]

(3.4)

(3.5)
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and its efficiency is
(3.8) (" 4+ s + 1)[3/¢1 + 3(s — 1) /¢ + (s — 1)/l .

4. Combinatorial properties of certain cubic designs. We prove

THEOREM 4.1. In a cubic design with p1 = 0, k is divisible by s and further every
block of the design contains k/s treatments of the form (e, 8,v)(B,y = 1,2, -+, 8)
foreverya = 1,2. .-+ |s.

Proor. Let eq; be the number of treatments of the form (e, 8, v)(8, v = 1,
2, -+, 8) ocecurring in the 7th block (7 = 1, 2, --- , s) of the design. Then

Z €ai = 8T
1

4.1
(*1) Z ai€ai — 1) = 28°(s — 1)\ + s2(§: — 1),

Define €a. = J.:€ai/b = s'r/b = k/s. Then
(42) 2 (eai — €a)’ = &Ir + 2(s — DM + (s — 1)°\] — DK/

= (0, since p; = 0.

Hence €a1 = €a2 = -+ = €ap = €. . SiNCE €,; must be an integer £ is divisible
by s. Therefore the result of the theorem is established.

In a similar way to the above theorem we can prove

THEOREM 4.2. In a cubic design with py = 0 and p, = 0, k is divisible by s* and
further every block of the design contains k/s’ treatments of the form (a, B, v)
(v=1,2,---,8) for every e and B (e, B = 1.2, --- | s).

From the above theorem we deduce

COROLLARY 4.1.

(1) A mecessary condition for the existence of a cubic design with pp = 0 4s that
k is divisible by s.

(ii) A necessary condition for the existence of a cubic design with py = 0, p = 0
is that k is divisible by s”.

5. Construction of cubic designs. The three dimensional lattice designs (cf.
Kempthorne [4]) in blocks of size s can be seen to be cubic designs with param-
etersv = s, b =35, r =3,k =8 A\ = 1,A\ = 0, \; = 0, if the basic pattern
is taken only once.

In this section we give a method of constructing cubic designs from the
balanced incomplete block (BIB) designs. This method provides us, many
times, a tool of constructing cubic designs in blocks of plot sizes different from
sand §.

THEOREM 5.1. If M is the incidence matrix of a BIB design with parameters
o* =5, 0%, ¥, k¥, \* then

(5.1) N=MsxMxM
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18 the incidence matrix of a cubic design having its parameters
v=2¢, b=0b", r=: k=i

(5.2)
M= =AY, =R

393

Proor. The parameters v, b, r and £ require no explanation. Observing that

(5.3) MM = (* =\, + \*E.,

we have,

NN' = (* = NI, + N*¢* =\l x E,o + I, x E,y x I,

(5.4) + Eu x La] + N 0% = AL x Eaan

4 Ey x I, X Ey + Egp x L] + \¥E,, .

It is now easy to verify that A , A, and \; are as given in (5.2).
Ilustration 5.1. Starting with the BIB design having parameters

(5.5) =3=0b rF=2=k A=1,
by the method of Theorem 5.1, we obtain the design

(111, 112, 121, 122, 211, 212, 221, 222)
(111, 113, 121, 123, 211, 213, 221, 223)
(112, 113, 122, 123, 212, 213, 222, 223)
(111, 112, 131, 132, 211, 212, 231, 232)
(111, 113, 131, 133, 211, 213, 231, 233)
(112, 113, 132, 133, 212, 213, 232, 233)
(121, 122, 131, 132, 221, 222, 231, 232)
(121, 123, 131, 133, 221, 223, 231, 233)
(122, 123, 132, 133, 222, 223, 232, 233)
(111, 112, 121, 122, 311, 312, 321, 322)
(111, 113, 121, 123, 311, 313, 321, 323)
(112, 113, 122, 123, 312, 313, 322, 323)
(111, 112, 131, 132, 311, 312, 331, 332)
(111, 113, 131, 133, 311, 313, 331, 333)
(112, 113, 132, 133, 312, 313, 332, 333)
(121, 122, 131, 132, 321, 322, 331, 332)
(121, 123, 131, 133, 321, 323, 331, 333)
(122, 123, 132, 133, 322, 323, 332, 333)
(211, 212, 221, 222, 311, 312, 321, 322)
(211, 213, 221, 223, 311, 313, 321, 323)
(212, 213, 222, 223, 312, 313, 322, 323)
(211, 212, 231, 232, 311, 312, 331, 332)
(211, 213, 231, 233, 311, 313, 331, 333)
(212, 213, 232, 233, 312, 313, 332, 333)
(221, 222, 231, 232, 321, 322, 331, 332)
(221, 223, 231, 233, 321, 323, 331, 333)
(222, 223, 232, 233, 322, 323, 332, 333)
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which can be easily verified to be a cubic design with parameters
(56) U=27=b, =8=k, )\1_-—'4, A2=2, >\3=1.

The efficiency of the above design can be seen, using (3.8), to be 0.899. The
efficiency of the usual 3-dimensional lattice for testing a 3° treatments in blocks
of 3 plots can be seen to be 0.591. Thus, the design proposed in the above illustra-
tion is more efficient than the usual 3-dimensional lattice design for testing 3°
treatments.

6. Non-existence of certain symmetrical cubic designs. We shall call, cubic
designs with p; 5 0 (¢ = 1, 2, 3), to be regular cubic designs. From Shrikhande’s
[11] and Connor and Clatworthy’s [3] results, it follows that

TaEOREM 6.1. A mnecessary condition for the existence of symmetrical regular
cubic designs s that p1'pz*ps® should be a perfect square:

It is obvious that the above theorem can be used only when s is even. In that
case, we get

CoROLLARY 6.1. A mecessary condition for the existence of symmetrical regular
cubic designs when s s even is that pipsps should be a perfect square.

The following designs violate the condition of the above corollary and hence

are non-existing:

(i)s=4,b=64,r=9=k,)\1=2 A=1 A = 1.
(i) s=4,b=64, r =18 =k, M\ =7, \s = 5)\ = 4.
(i) s =4, b=64, r =18 =k, A\, =4, A2 = 5, ;3 = 5.
(iv)s=4,b=64,7=27=k)\1=12,)\2=11 >\3=11.
(v) s=6,b=216,r =30 =k, M = 8 N =5, \s = 3.

(vi) s =6, b =216, r=20 =k M =7 A =2 N\ = L.

Further necessary conditions for the existence of symmetrical, regular cubic
designs can be obtained with the help of the Hasse-Minkowski invariant. For a
brief resumé of the properties of the Legendre symbol, Hilbert norm residue and
the Hasse-Minkowski invariant we refer to Ogawa [5].

Following Ogawa, we can show that

(6.1) Co(NN') = C, {diag (pw, p1Q1, p2Qs , psQs)}
where diag (a1, as, -+, a,) stands for a diagonal matrix with its diagonal
positions being filled by the elements or matrices @, @z, * -+ , @» , and Q; is the

gramian of the rational, independent vectors corresponding to the root
0: (7 = 1,2, 3). We can show further that

(6.2) Q@] - Q] ~ v,

and

(6.3) (1@, 1Q))»(1Qil, 1Qs)) 5(1Q:], 1@s)) - Co(@1)Co(@)Cp(Qs) = (=1, —1),

for all primes p, where a ~ b means that the square free parts of a and b are



CUBIC DESIGNS 395

the same. Using (6.2), (6.3) and the properties of the Hilbert norm residue
symbol and the Hasse-Minkowski invariant, (6.1) becomes

3
Co(NN') = (=1, =1), {H (-1, pi)Z"("'"“’”} (b1, p2)5'*
(6.4) =1

. (Pla Pa);laa(Pz, Ps);zaanll, P1P3)p(‘Q2l, P2P3)p(Ps, v)p*

We now find |@| and |Q.|. Let us number the treatments («, 8, v) by
(a — 1)s* + (8 — 1)s + 4. Define the vth order vectors £a1 , % , & (o, 8,7 = 1,

2,---, s) as follows: The vectors £, have s* unit entries in the positions
(a—1)s +1,(a—1)+2, -+, as’and zeros elsewhere (a = 1,2, - - - ,s). The
vectors £ have s” unit entries in the positions (8 — 1)s+1,(8 — 1)s+ 2, - - -, Bs;

S+ B —1)s +1,8 +@B —1)s + 2,---, & + Bs;---;8(s — 1) +
B=1s+1,8s—1)+B—1)s+2, -+, s%(s — 1) + Bs and zeros
elsewhere (8 = 1,2, - -- , s). The vectors £,; have s* unit entries in the positions
vs+7,25+y, o, (s— sty +v+s+y 0,8+ (s— 1)s +v;

58 —1) 49,86 —1)+s+7v, -, —1) +s(s —1) +yand
zeroes elsewhere (y = 1,2, --- , s).

We can easily see that among £.1 , & , &3 only 3(s — 1) + 1 are linearly inde-
pendent vectors and E,; lies in the vector space generated by £.1, &, €3 - The
vector space generated by a1, & , &3 and orthogonal to E,; can be seen to be the
proper space corresponding to the root p, of NN'. Hence

2 2 2
83 S Elp 8 Elp S Elp
2 2
v SEn I, sEp,, sE,
Q1 SEn sEp, ST, sEy

2 2
SEn sE,, sE,, ¢sI,

(6.5)

where p = s — 1.
Evaluating the determinant on the right hand side of (6.5) we get

(6.6) Q| ~ s.

Let us now define 3s” vectors nug; , nayz , ngys of order v (o, 8,y = 1,2, - -+, s)
as follows: n,g has s unit entries in the positions corresponding to (a — 1)s* +
B—-Ds+1,(a =1+ B—1)s+2 -, (e — 1)s + Bsand zeros
elsewhere (a, 8 = 1, 2, -+, s). nay has s unit entries in the positions cor-
responding to (a« — 1) + v, (a — 1) + s+, -+, (a — 1)+ (s — 1)s + ¢
and zeros elsewhere (a,v = 1,2, --- , s). ngy has s unit entries in the positions
corresponding to (8 — 1)s + v, 8 + (B8 — 1)s + ~, -+, (s — 1)s* +
(B — 1)s + v and zeros elsewhere (8,y = 1,2, ---, s).

Among the n vectors only 3(s — 1)® 4+ 3(s — 1) + 1 are linearly independent.
We can easily show that the vector space generated by n’s and orthogonal to the
vector space generated by &’s is the proper space of NN " corresponding to the
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root p, . Hence

v
(6.7) Q1 ~
Q2

B S'Ey, S'Ey, s'Ey, sE12 sE1p2 sEyp2
SE,  $I, sE,, sE,, sly,xEy, sI,xE, E,p
SEn  sEp, s'I, sE,, sk, x1I, E,» sI, xEy,
SEn  sE,, sE,, s, E e sEy,xI, sE,xI,
sEp slyxEpn sEpxI, Ep, slpe I,xE,, EnxI,xE,
sEpn slyxEy  Ep, sEaxI, I,xE,, sl E,p,xI,

| sEpn Epp  SIyxEpn sEpxI, EypxI,xE, E,,xI, sl pe _4

Evaluating the determinant, and using (6.6) we get
(6.8) |Qs] ~ s©7V.
Substituting the square free parts of |@| and |@.| in (6.4) and simplifying we get

3
C,(NN') = (-1, —1), {.I_I (-1, m)‘;:*“'*“’”} (p1, p2) '™

(p1y p3) 5 (p2, p3) 57 (s, p1) (s, p2ps) .

Since NN’ ~ I, , we should have C,(NN') = (—1, —1), for all primes. Thus
THEOREM 6.2. A necessary condition for the existence of a regular symmetrical

cubic design s that
3
ai(ar+D/2
{Hl (=1, p)5" " }(pl, p2)3' “*(p1, p3)3*"*
i

—1)
(o2, )™ (5, p1) (s, P2P3);:8 = +1

(6.9)

for all primes p.
The following corollary can be deduced easily.

COROLLARY 6.2.

(1) Necessary conditions for the existence of regular symmetrical cubic designs
when s is odd are that (s, p1), = +1, whens = 1 (mod 4); and (—1, p1) (s, p1)p =
+1 when s = 3 (mod 4).

(i1) Necessary conditions for the existence of regular, symmetrical cubic designs
when s s even are that pipsps must be a perfect square and further (p2, —p3)p, = +1
when s = 0 (mod 4); and (p2, —p3)p = +1 when s = 2 (mod 4).

The following designs are non-existing in view of the above corollary

1) s=8,v=2T=b,r=8=k MN=2 =3 =1

(i) s=5,v=125=b, r =16 =k, Ay = 8 X =3, A3 = 0.



CUBIC DESIGNS 397

REFERENCES

[1] Bosg, R. C. and Nai1r, K. R. (1938-40). Partially balanced incomplete block designs.
Sankhya 4 337-372.
[2] Bosk, R. C. and MESNER, DALE M. (1959). On linear associative algebras correspond-
ing to association schemes of partially balanced designs. Ann. Math. Statist. 30
21-38.
[3] Connor, W. S. and CLatworTHY, W. H. (1954). Some theorems for partially balanced
designs. Ann. Math. Statist. 26 100-112.
[4] KEMPTHORNE, OscAR (1952). The Design and Analysis of Experiments. Wiley, New York.
[6] Ocawa, JUNJIRO (1960). A necessary condition for existence of regular and symmetrical
experimental designs of triangular type with partially balanced incomplete
blocks. Ann. Math. Statist. 30 1063-1071.
[6] PERL1s, S. (1952). Theory of Matrices. Addison-Wesley.
[7] RagHAVARAO, DAMARAJU (1960). A generalization of group divisible designs. Ann.
Math. Statist. 31 756-771.
[8] RacGHAVARAO, DAMARAJU (1963). On the use of latent vectors in the analysis of group
divisible and L, designs. J. Indian Soc. Agric. Statist. 14 138-144.
[9]1 Roy, PurNENDU MonoN (1953-54). Hierarchical group divisible incomplete block
designs with m-associate classes. Sci. Culture. 19 210-211.
[10] SHAH, B. V. (1959). A generalisation of partially balanced incomplete block designs.
Ann. Math. Statist. 30 1041-1050.
[11] SHRIKHANDE, S. S. (1950). The impossibility of certain symmetrical balanced incom-
plete block designs. Ann. Math. Statist. 21 106-111.
[12] SingH, N. K. and SHUKLA, G. C. (1963). Non-existence of some PBIBD. J. Indian
Statist. Assoc. 1 71-78.
[13] THARTHARE, SURESH K. (1963). Right angular designs. Ann. Math. Statist. 34 1057-
1067.
[14] VArRTAK, MANOHAR NARHAR (1959). The non-existence of certain PBIB designs. Ann.
Matk. Statist. 30 1051-1062.



