MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE
MULTIVARIATE DATA

By IReNE MoNAHAN TrawiINskI AND R. E. BArRaMANN!
Virginia Polytechnic Institute

1. Introduction. The purpose of this investigation is the development of
methods of estimation and tests of hypotheses in multivariate experiments in
which a different subset of the variables under study is observed in each group
of experimental units. Several writers (e.g. Anderson [1], Edgett [2]) have dealt
with the problem where observations on some of the variables are missing more
or less by accident. In this paper we shall be concerned with experiments where
variables are missing not by accident, but by design.

As an example encountered frequently in psychological research, consider
the construction of standardized tests. One phase in the standardization of such
tests is the estimation of correlations between parallel forms. If three or more
such forms are required, as is frequently the case for tests to be applied on the
national level, estimation of correlation coefficients would necessitate the applica-
tion of all forms to a representative standardization group. The application
of more than two forms to the same student may however introduce errors, for
recall, learning, or fatigue may seriously influence the results. A given student
in the standardization group may receive only two tests, and symmetry suggests
that an equal number of students be tested on each pair of examinations.

To facilitate the handling of rather general situations, we shall assume a
modification of the general linear model for multivariate analysis, E(¥M) =
AEM, where Y'(N X p) is a matrix which contains all observations, A(N X m)
is the design matrix, and &(m X p), a matrix of parameters. The matrix M,
of order (p X u), was introduced by Roy [8] for allowing given linear combina-
tions of variables in the model. It is particularly useful in the present case since,
by a suitable array of ones and zeros in the matrix M, we can indicate whether
or not a particular variable is observed in a given group of subjects. It will be
recalled that models for simple and multiple regression and analysis of variance
and covariance are special cases of this general linear model.

In accordance with customary assumptions made in this model, we shall
assume that the covariance matrix of the elements in a given row of the matrix
of observations is X(p X p), the same for all rows, if these rows are complete.
If the rows of the observation matrix are incomplete, the covariance matrix
of the terms in such a truncated row will be the corresponding truncation of
=. Different rows in the observation matrix are assumed to be independent.

Throughout this paper we shall use the notation 9B/dax: to indicate dif-
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ferentiation of a matrix B with respect to the element in the kth row and Ith
column of A, regardless of any functional relations among the elements of A.
The notation B*” will be used exclusively to indicate differentiation of a matrix
B with respect to the parameter ox; , the covariance of the kth and Ith variables.
The distinction between these two definitions of differentiation of a matrix
must be noted when one is differentiating with respect to a non-diagonal element
of a symmetric matrix. Thus, for example, 4% /90y, is a matrix which is triangular
in the sense that all elements on one side of the diagonal are zero and (9X/d0x:1)4;
= 849;: . On the other hand, =*” is a symmetric matrix whose typical element is

(zlkl])ij — 5%5].1 k é l, 7 é .7

2. Maximum likelihood equations for £ and X. Suppose that a different
subset of size u of the p variables under study is observed in each of K groups of
n experimental units. The (n X u) matrix of observations in the 7th group,
which we shall denote by Y;, is obtained by multiplying the (n X p) matrix
¥: of theoretically possible observations by a post-factor matrix M,(p X u) con-
sisting of ones and zeros. The matrix of expectations in the sth group is E(Y:) =
AEM; , where A(n X m) is the common design matrix for all groups and £(m X p)
is a matrix of parameters. We shall denote. by U;(u X u) the covariance matrix
for each row vector of Y; . Thus U; = M{ZM; , where Z(p X p) is the disper-
sion matrix for all p variables. The logarithm of the likelihood function of the
observations for the entire sample of N = Kn experimental units is

K K
(2.1) L(Y') = —iNulog 2r —in Zl log |U;| —% tr z; U;'P; P;
where P; = Y; — M:£'A’. Note that the matrix Y'(N X ) may be regarded
as partitioned into K submatrices Yi(n X u).

Let © stand for the parameter space of (¥, £). To find the joint maximum
likelihood estimate of £ and X in @, we shall first equate to zero the partial
derivative of the last term of (2.1) with respect to £ This will yield an expression
for £ as a function of . (If X is assumed to be known, the estimation of £ is
of course trivial.)

We shall then obtain the partial derivative of the likelihood function with
respect to = and set this equal to zero. The expression for £ as a function of =
will be substituted into the left side of this second equation, which will then be
denoted by ¢(X). The zero of this function, = = Xg, will be the maximum
likelihood estimate of dispersion. When Xg is substituted for = in the expression
for £, we shall then have the maximum likelihood estimate, £ = &, of the pa-
rameter matrix.

First

(2.2) (9/9%s)(tr U7'PP;) = Enl Z (8/0(P3) 1) (tr UT'PP;)(3/085) (Pi)ia -

=1 a=1

Now
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(8/9P}) (tr UT'P;P}) = (8/9P:)(tr PiUT'P;) = 2P U7 = 2(Y; — AfM,)U:"
and hence
u X m P 2 .
(8/0(P)a) (tr U;'P, P;) = 2 BZI yipuls — 2 Z; Z; ‘; @i Euy MSBULSH
= i =

where yi2, 452 , and m$% denote typical elements of the matrices Y;, U, and
M, respectively.
Next we obtain the second factor in the product in (2.2), that is

(8/985) (Pi)ia = (8/0%4)(Yi — AEM.) i

» . )
—(9/0%s) Zl 21 alu'fu’rm'(yta)z = —'alvmﬁ(:x)-
‘Y= “=

Hence, from (2.2),

U

(8/08,s) (tr U7'PiP;) = —2 2 2, (21 YRS ar, msY

kild v kJ . .
- Z Z Z Orp Euy mf,jg)u‘?f‘) a mél))

p=1 7=1 =1

—2(A'Y; U7'M3),s + 2(A'AEMLU; M) 5

and

LS 1: V4 X 1 ! 1. 7 X 7 1. 4
(9/0%,) (tr g U;'P; P;) = —2 g (A'Y; U;'Mi),5 + 2 Z; (A'AfMLU;'M3),s .
Consequently

K K
(2.3) (8/06) L(Y') = _Zl A'Y; U7ML — ) AAEML UM

i=1

Equating this expression to zero, we obtain the following expression for € as a
function of =:

(2.4) £=Fv?
where

LS !’
(2.5) F = ; M., U7 'X:
(2.6) X; = (A'A)TA'Y;
and

X !’
(2.7) V=> MUM;.

4=l

Now to find the maximum likelihood estimate for =, we differentiate the last
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two terms of (2.1) with respect to =. First we have

(8/3043) (log|U|) = Z Z (8/0ui? ) (1og|U4 ) (8/d0s Jus? .

Now

(8/0us? ) (logUs]) = iy .
Also wi? = D21 > B mioagmst; so that
(28) (a/am,s)ukz = mf,'k)m()
Hence

(8/3035) (log|Ui]) = 2 ;u(nmffk)m;? (MU7M:)
and
K K ,

(29) (a/az)(; log | U:|) = ; M, U7'M; .

Differentiating the last term of (2.1) with respect to X, we have
(2.10)  (3/80,)(tr UT'PP;) = Z Z (8/0us?) (tr U7'PP;) (3/90ys)uii -

Now
(8/0us?) (tr U7'PP;) = — (UT'PPUT ).
Substituting this expression and (2.8) into (2.10), we obtain

u

(8/d0y) (br UT'PPY) = — X > (UTPPIUT urm$ims?

k=1 l=1
= —(MU7PPUT M)y .
Hence
X 7 X ’ ’
(2.11) (9/0%) <t1' > U'P; Pi> = —> M, U;'P;P;U;'M..
=1 =1

From (2.9) and (2.11) we can write the derivative of the likelihood function
(2.1) as

(3/0x)L(Y) = ———-n Z M, UM + = Z M, U7'P, P; UM

1—1

If we substitute (2.4) and (2.7) into this equation (recalling that P; =
Y; — Mi£A’), we obtain

K
(3/0Z)L(Y') = —1nV + 1> MU (Y; — MiV'FA') (Yi — AF'V'M,)U7' M .
7=1
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Setting this expression equal to the null matrix, we have the following condition

K
(2.12) &(Zg) = Vo — 17", MUgiPaPoUaiM: = 0
=1
on the maximum likelihood estimate of dispersion. In this equation,
(2.13) Un: = MiZM;
K
(2.14) Vo = 2, MUaiM;
=1
and
(2.15) Poi = Y: — MiVg'FoA
with
X !
(2.16) Fo = Z; M,UgiX: .

In the next section we shall discuss a method for finding a solution = = =g
for the equation system ¢(=) = 0.

The maximum likelihood estimator for £ is found when the solution Ego of
of the equation (=) = 0 is substituted into (2.4) to obtain

(2.17) £ = FoVg'
where Fg and Vg are defined by Equations (2.16) and (2.14) respectively.

3. Solution for the maximum likelihood estimate of dispersion. The Condition
(2.12) is a system of p(p + 1)/2 distinct equations in p(p + 1)/2 unknowns.
An initial estimate X, for the solution of these equations may be computed by
averaging estimates based on the group error sums of squares and products.
Successive approximations may be obtained from the Newton iterative formula
é = 6o — (Vo) "do . In this equation, 8, is the vector of the p(p + 1)/2 distinct
elements of o, and ¢; is the corresponding vector of first approximations. ¢o
is a vector of distinct elements of ¢$(X), and V¢, is a matrix, each of whose
columns is a vector of derivatives of distinct elements of ¢(X) with respect to a
particular element oi; of the matrix =. The elements of the rows and columns
of V¢, are ordered in the same way as the elements of éo, é1, and ¢o .

The matrix of derivatives, $*” (=), whose distinct elements comprise the

columns of V¢, is given by

$(5) = VI 4 o7t 3 MUT MU UM
i=1
K
(3.1) + 'Y M, UF'P, P U UM UM
1=1

- il M, U7 PHIP UTM: — o} i M. U7'P; P " UM

1=l
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where
K
(3.2) v = 3 MM E MU M
=1
is the derivative of V as defined by (2.7). If 'we introduce the notation
(3.3) T = UMUTPP; = Miz*MU;'PP;
and
(3.4) R = PMIP;

then Equation (3.1) can be written
(3'5) 4)[“](2) = V[kl] "I" n—lZK M:,,U:l[(T:k” "I" T:‘k”) _ (ngl) + R:(kl})]UTIM:
=1

where the {kl} superscript above T; and R; is used merely to indicate that for
the sth group, a different T{** and R!*" is associated with each (k, !) combina-
tion. Now.
R = (Y; — Mir'A)*I(Y; — AEM;)
= [-Mi(V"'F)™A|Y: — AF'V)M,]

(36 = —MV'FHA'Y] + MV 'VFIVFA'Y]
+ MVF*A'AF'V'M: — MV V¥V 'FA'AF'V'M,

where

K
(3.7) F* = — % MU (Mx ™M) U X:

1=1
is the derivative of F as defined by (2.5). If we introduce the notation
(3.8) Sl = MV 'VHIVTIF(A'A)
and
(3.9) E# = M{V'F*1(A'A),

then we obtain the simple computational form
(3.10) R = —E®X; + SMX, + EMFV M, — SHFVM,

where X; is given by (2.6).

A set of programs for obtaining the solution of Equation (2.12) by the iterative
procedure described above has been prepared for the IBM 650 at the Virginia
Polytechnic Institute. For problems of the type discussed in this paper, the
analysis can be performed with the aid of these programs if the number of
variables (p) is less than six. A more general procedure would require the availa-
bility of a larger electronic computer.
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It should be noted that the elements of $(=) in (2.12) are related to the
first derivative of the likelihood function (2.1) by
$is = —n [L(Y)]™ t#]
du = —2n N (L(Y')¥.

Consequently,
B = =LY ey i

and
B = o LY

Hence, if in the V matrix, one applies the factor n/2 to each row corresponding
to a ¢q; and n to each row corresponding to a ¢4;(¢ % ), one will obtain a sym-
metric matrix whose elements are the negative second derivatives of L(Y')
with respect to each pair of ¢;; and ox; . Thus, the criterion of positive definiteness
of this matrix may be used to test whether the obtained solution for = makes the
likelihood function a maximum.

The positive definiteness of this matrix assures that the likelihood function
has a local maximum at this point. Because of the eomplexity of the general
expression, a solution has not been found for the problem of whether this is
the only maximum or the absolute maximum. It will be noted that the iterative
method employed to obtain a solution of Equation (2.12) starts with a simple
approximation whereby variances and covariances are estimated from those
groups which contain information on them. A close agreement between the
solution for (2.12) and the approximate solution, together with a verification
that the solution for (2.12) is a local maximum, may serve as evidence that
g is the maximum likelihood solution.

4. Testing of hypotheses. In addition to estimating the parameters, £ and
X, in the general linear model, we may wish to test hypotheses on certain com-
binations of these parameters. Such hypotheses are conveniently stated in the
form

Hy:Ce=0 H,:Cg =0

where C is a predetermined ‘“hypothesis matrix,” usually an array of ones,
minus ones, and zeros. The usual tests for equality of treatment effects and
tests on a subset of regression weights are special cases of this ‘‘general linear
hypothesis.”

In what follows we shall derive a likelihood ratio test for this hypothesis.
Maximum likelihood estimators in the parameter space and the subspace de-
termined by the null hypothesis will be denoted by symbols with subscripts
@ and  respectively.

To maximize the likelihood function subject to the condition C¢ = 0, we
equate to zero the derivative with respect to &; of the function L(Y') +

s

> i1 D it NasCankes -
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Using the result in (2.3), we obtain the conditions

K K s
Zl [A'Y; Ui Mils — Zl [A’A%, MU Mils + D Niscin = 0
= = 1=1

on the maximum likelihood estimates &, in w. If we denote the (s X p) matrix of
Lagrange multipliers by A we can write these conditions as

(41) 2 A'Y;USIMI — A'Ag, 2 M,U;IM; + C'A = 0.
Now if we pre-multiply by C(A’A)™ and define
(4.2) V. = il MU.IM:,
Equation (4.1) becomes
(4.3) é CXU.IM{ — C&V, + C(A'A)7'C’'A =0,
where X; is given by (2.6). But C£, = 0, whence

f) XU.IM! + (A'A)7'C'A = 0.

=1
If we solve this expression for A angd substitute the result into Equation (4.3),
we obtain

K K
(44) DX USM! — £V, — (A'A)7'C[CAA)CTT Y CX; Ui M;: = 0.
i=1 =1

Let us introduce
(4.5) X.: = X; — (A’A)7'C[C(A’A)7'CT'CX: .
This expression represents the matrix of standard least squares estimates of

the parameters in the reduced model which is applicable if the null hypothesis
is true. Substituting (4.5) into (4.4) and solving for &, , we obtain

(4.6) £ = (f Xui U:%Mé) L'
7=1
If we make the definition
K
4.7) F, = > MUGiX.:

=1
analogous to the definition in (2.16), then we obtain
(4.8) £ = F.VJ,

which has the same form as ¥ given in Equation (2.17).
The derivative aL(Y') /da,s is the same under the null hypothesis as in the
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general case. For introducing the constraint and the Lagrangian multipliers
merely amounts to adding to the derivative terms d(%;C&)/d0,; which are
equal to zero. Consequently the second equation for the maximum likelihood
estimates is the same as (2.12), except that & must be replaced by &, in the
expression for Po; , which merely amounts to replacing the X; in each group by
the corresponding standard least squares estimate X, for the restricted model
in which H, is true.

Now from (2.1),

K K
log L(Q) = ——% Nu log 27 — %n > log |Ua| — %tr Z; Uqi Pas Poi’
i=1 =
and
1 1 & 1, S5 ip pf
log L(w) = —3 Nulog 27 — 50 > log Uy — 3 tr ) UgiPusPos.
t=1 i=1
Hence

K K
—2log A = n Y log [Uy| — n Y log |Uail
=1 =1 B
K K
+ tr 2 UgiPuPLs — tr 2 UgiPo;Pog
=1 =1
where, as stated above, all the expressions have the same form in w as in @,
except that wherever X; occurs, it must be replaced by X.;.

6. A demonstration study. An example was constructed to illustrate the iter-
ative technique for the solution of Equation (2.12). To obtain a sample of 45
observations on three variables from a known theoretical model, the following
artificial regression relations were used:

=10+ 3t + e, Y= 154+ 2t + e, Ys =204+ ¢+ e,
where
e = u+ 20 + 3w, e=u-4+v+w, e = 4u — 4.

In the above equations, u, v, and w represent independent N(0, 1) random
variables.

The data were divided into three groups of fifteen observations on three
variables. By omitting the data for one variable in each group, a set of three
groups of observations was obtained, each consisting of fifteen observations
on two different variables.

For this example, the design matrix A(15 X 2)consists of a column of ones
and a column of values of £ ranging from 0 to 14. The parameter matrix £(2 X 3)
contains a row vector of means (u, p2, ps) = (10, 15, 20) and a second row
vector of regression coefficients 3 = (81, B2, B:) = (3, 2, 1). The post-factor
matrices M; for groups 1, 2, and 3 are as follows:
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10 00 10
M;=|0 1 M,=|1 0 M;=|0 0].
00 01 01

The exact maximum likelihood estimate Xq for the known theoretical dis-
persion matrix £ was compared with the initial estimate X, used in the iterative
procedure. The theoretical values and the approximate and exact estimates
were as follows.

14 6 —4 120 39 —49 111 47 —42
X = 3 0 X = 18 —48 o = 22 —621.
32 324 372

The maximum likelihood estimate Zq was established to three decimal places
by seven iterations of the Newton formula. To verify that Zq was a maximum,
the matrix of negative second derivatives of the logarithm of the likelihood
function was shown to be positive definite by means of the forward Doolittle
method.

An approximate estimate § for the regression coefficients was based upon the
substitution of X, for Xg in the maximum likelihood expression for & given by
Equation (2.17). The theoretical values and the approximate and exact estimates
for the regression coefficients were as follows: § = (3 2 1),3 = (294 1.94
1.12), 8¢ = (2.92 1.95 1.11). Another approximate estimate of the regression
coefficients was obtained by averaging the results of three independent bivariate
analyses, but this was not nearly as good as the estimate §, which can easily be
computed.

It can be seen from the data given above that the matrix Xg is very similar
to the more easily obtainable X,. The agreement between the exact and ap-
proximate regression estimates is even more striking. It cannot of course be
ascertained by analyses of this kind that one type of estimate is consistently
superior to another. With 45 observation vectors, the sampling effect is con-
siderably greater than the disagreement between X, and =q. The laborious
computational work involved in obtaining Xe would seem to be justified only in
studies where measurements can be made with a high degree of precision and
where unusually large samples are involved. Especially where correlation matrices
are desired (as, for example, in estimation of the reliabilities of standardized
tests), the maximum likelihood solution would seem to be the logically con-
sistent estimate to use with incomplete multivariate data. For in the normal
case, when complete multivariate data are available, correlations and functions
of correlations are ordinarily estimated by maximum likelihood, that is, by the
sample correlation coefficients.
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