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1. Brief summary. A population of particles is considered whose size Xy(f)
changes according to a branching stochastic process. The purpose of this paper
is to find an approximate distribution of Xx(¢) when £ is fixed (not necessarily
large) but the initial size of the population, N, is large. If N is allowed to tend
to infinity, and if the parameters of the process are made to change in a way
analogous to the Poisson approximation of a binomial distribution, then it is
shown that a limiting distribution of the process Xy(t) — N exists as N — oo,
and this limiting distribution is the distribution of a continuous process with
independent increments. The relation between the parameters of the infinitely
divisible distribution of the limiting process and the sequence of branching
processes is exhibited.

2. Introduction. A continuous time branching stochastic process (to be defined
below) is considered whose size (i.e., the number of particles) at time ¢ will be
denoted by Xx(t). We assume that P[Xy(0) = N] = 1, ie., at time ¢t = 0
there is a non-random number N > 0 of particles in the population. We assume
that all particles act independently of each other. At any time a particle might
“split” into k new particles, where k = 0, 1, 2, - - -, i.e., it dies (or vanishes) as
it produces k new particles. These new particles are assumed to be stochastically
independent of the parent particle and all other particles that exist at one time
or another in the population.

Let ox(t) be a positive continuous function of ¢ which might or might not
depend on N. It is assumed that the conditional probability that any particular
particle splits into &k particles during the time interval [¢, ¢ + h], given that it is
in existence at time ¢ and came into existence at time ¢ < ¢ (¢ = 0) is equal to

1) Meen(t)h + o(h),

where \: , on(t) and o(h) do not depend on #’, where A = 0 is constant and not
zero for all k, and where o(h) is assumed to be uniform with respect to ¢. The
sequence {\;} is assumed to satisfy

@) g),x,, < w
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We denote

(3) )‘=Z)\k)

and we assume that the conditional probability that a particular particle does
not “split” during [¢, ¢ + A] given that it exists at time ¢ and came into existence
at time ¢’ < ¢ (¢ = 0), is equal to

(4) 1 = Mon()h + o(h),

where again the limit indicated by o(k) is assumed to be uniform in ¢ and does
not depend on t'. (This assumption cannot be derived from (1) and therefore
must be included.)

We assume each )\, and \ to be functions of N which satisfy

(5) limyaw NN = v = 0, and
(6) 0<1imN_,wN>\=u=kZuk< o0,
=0

The final assumption is that
(7) liJnN_mgoN(t) = ¢(t) > 0

uniformly over every bounded interval.

The above assumptions will be shown to yield the limiting distribution of the
stochastic process Xx(t) — N (as N — o) which is shown to be that of a stochastic
process X (t) with independent increments whose characteristic function at each
t is given by

(®) V) = exp 813 (¢“ — 1y,
where
(9) ®(t) = l /ga(r) dr.

It should be first pointed out that the branching process here differs from the
usual branching process in that we do not consider spontaneously generated
particles. The exact distribution of Xx(¢) is extremely difficult or impossible to
obtain in any reasonable form. The most general result that we know about the

- exact distribution of a branching process was obtained by D. G. Kendall [5]. He
obtained the probabilities { P[X1(¢) = n],n = 0, 1, - - -} in the case where \; = 0
for k £ {0, 2} and where Ag1(f) and Mep:i() were arbitrary positive continuous
functions of ¢, u(¢) and »(¢) respectively. In his paper, Kendall used the method
of replacing the differential-difference equations for the distribution of the
population size by a partial differential equation for its generating function.
This method breaks down in the branching process considered in this paper.
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The limit theorems usually considered for branching processes are those in
which the limiting distribution or some limiting probability or a limit in quadratic
mean of Xy(¢) is obtained for N fixed but as ¢ — o, where Xy(¢) is perhaps
suitably normed. (See [1]-[5] and [7]-[11].) Here ¢ is fixed, N is allowed to tend
to infinity, and the limiting distribution obtained is not only the distribution of a
random variable but the distribution of a process.

3. Some lemmas. In this section we prove five lemmas, Lemmas 1-5, which
are needed to prove both Theorem 1 and Theorem 2. Lemma 2 might be of
a small amount of independent interest and is used only to prove Lemma 3,
which is used to prove Theorem 1. Lemma 4 is a combination of particular
cases of a Helly theorem and the Lebesgue dominated convergence theorem; it
is used in the proofs of Lemma 5 and Theorem 2. Lemma 5 is used in the
proof of Theorem 1.

The following lemma is used a number of times in this paper without being
mentioned explicitly. In particular, it is used in the proof of Lemma 3.

Lemma 1. The conditional probability that a particle splits into k particles during
[t, t + h], given that it exists at t and at ¢ < i, is Mow(¢)h + o(h), where o(h) does
not depend on t'. The condtional probability that it does not split during [t, t + h],
given that it exists at t and at t < t,is 1 — Mex(8)h + o(h), where o(h) does not
depend on t'.

Proor. We prove only the first assertion. For one particular particle, let S
denote the event that it splits into & particles during [¢, ¢ + k], let A(r) denote the
event that it is in existence at time r, let T denote the time it came into exist-
ence (at time 0 or astheresult of a particle splitting), and let Fr(¢”) = P([T < t"]
| A(#) A(f)). Then, by (1) in Section 2, we have

P(S:|ADA()) = fot' P(8: | A()A(E), T = ¢") dF(¢")
- [ " P(SL|AW), T = ) dFs(t")

- [ " Owen(Oh + (k) dF2(t") = Neon(D)h + o(h),

which completes the proof.

Lemma 2. Let f be a real-valued function over [0, 1] which is Riemann integrable.
Let 0 = Tnp < Ty < *+ < Zun = 1 be such that maX1<r<n{Tnr — Tns-} =0
asn — o, If &, 1 & [Znjm1 , Tnil, then

Lo = I_I (1 + fens) (s = nps)) = exp [ f(2) d

asn — oo,
Proor. Riemann integrability of f implies that f is bounded. Hence for all

sufficiently large values of » and for ¥ = 1, 2, .-+, n, we have |f(£.x)-
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(Znx — Tnx—1)| < 1. Then we may write

log L, = ,;f(zn_k)(xn.k — Tag) + Ra

where

Baf < 23 (k) (T — Zai)”
Thus R, — 0 asn — o and
1
IOgLn-%ff(x)dx as n— o,
0

which was to be proved.
Let Yx(t) denote the number of particles which split during [0, ¢].
LemMa 3. For every t = 0, T > 0,
T

HWN+T%JMO=WWM=MPWW—M£ ox(r) dr.

(Incaset = 0,thenn = N.)

Proor. Consider one particular particle among the n in existence at time ¢.
Ift <+ < r + h, then the conditional probability that it does not split during
[r, 7 + h), given that it still exists at time r, is given by 1 — Nen(7)h + o(h).
Hence the conditional probability that it does not split during any of the intervals

{[t +jT/m,t + (j + 1)T/m},j = 0,1, ---,m = 1},

given that it is in existence at time ¢, is

m—1

,I=Io(1 — New(t + jT/m)(T/m) + o(T/m)),

which, by Lemma 2, converges (as m — ©) to exp — X [ on(7) dr. The con-
clusion of the lemma follows because of the independence of the n particles.
LemMA 4. Let u, 1, p2, -+ be a sequence of probability measures over n-dimen-
sional Euclidean space E™ letf, f1, fo, -+ - be a sequence of measurable functions
over E™, and assume that
(i) |un — w|(B) — 0 as n — « for every bounded measurable subset B < E™,
(ii) f, fi, f2, - - - are uniformly bounded a.e. with respect to u, p1, p2, -+, and
(iii) f, — f as n — o uniformly over every bounded Borel set except over a subset
of u- and pm-measure zero,m = 1,2, ---. Then [ fu dun — [fduasn— .
Proor. We may assume without loss of generality that | fm(z)] = 1 for all
zeE™ and all m. Let 0 < ¢ < 1. Let S be a sphere such that u(S) > 1 — /4
and u.(S) > 1 — ¢/4 for all sufficiently large values of n. Further, for all large
n we have |f.(z) — f(z)| < ¢/4 for all z & S except for a set of u- and un-measure
zero,m = 1,2, -+, and |u, — u/(S) < ¢/4. Hence for all large n (and letting
S° denote the complement of S in E™),
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[ e = [ s 5 || o e = [ 5
[ s = [rad | [ oand +|[ 50

< [V = S dun [ 171dln = ul + () + u(8) < 6

which proves the assertion.

In all of the applications that will be made of Lemma 4 in this paper, u,
and u will be carried by the set of lattice points £ in E™. For each such
lattice point z it will turn out that u,({z}) — u({z}) asn — o, f, fi, fo, -+ will
be uniformly bounded, and f,(z) — f(x) asn — . If one wtites f(z) = fu(z) =
0 for z £ £, then (i), (ii) and (iii) of Lemma 4 will be satisfied.

LemMA 5. Let Q(h) denote the conditional probability that none of the particles
produced during [t, t + h] also split during [t, t 4 h], given that one particle in
existence at time t does split during [t, t + h]. Then Q(h) — 1 as h — 0 (k> 0)
~ uniformly in t over every bounded interval (for fixed N').

Proor. We first note that the conditional probability that a particle existing
at time ¢ splits into & particles during [t, £ + h], given that it does split during
[t,t + R], is

w(h) = Deen(Oh + oW/ Dew(Dh + o(W)] = 3 + o(1),

and X ieoqi(h) = 1 for all B > 0. Let V denote the time of splitting of the
particle in existence at time ¢, and let Fy (v | k) be the conditional distribution
function of V, given the event B, (which is defined below). Let A denote the
event that none of the particles produced by a split during [t, ¢ + h] also split
during [¢, ¢ + k], and let B, denote the event that the particular particle in
existence at time ¢ does split into k& new particles during [¢, ¢ + h]. Then for
fixed hp > 0 and 0 < h = hy we have

Q) = 3 P(4]B)P(B,)
o t+h
=3 [ PIBL Y = o) dF 0| Wa)
(10) .

0

t+hg
1; {ft I o1 — Ayon@)(E + B — v)
+(+ b — 0)o(1)) dFv<v1h>} a(h).

It

Now ¢z(h) — N/\ as h — O which is a bona fide probability distribution. Fur-
ther, each integral in (10) is absolutely bounded by 1 for every h > 0 and con-
verges to 1as h— 0. Hence Lemma 4 applies, yielding the conclusion of the lemma.
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Let X, denote the change in the size of the population that results from the
nth splitting that takes place.

RemARK. The sequence {X1, X;, - -} are independent, identically distributed
random variables with common distribution P[X, = k — 1] = u/\ k=0, 1, 2,

Proor. Let T,_; denote the time of the (n — 1)th splitting, and let Fr,_,(7)
denote the conditional distribution of T,_, given the event M;Z[X; = k.
Thus Fr,_,(7) is a bona fide probability distribution. Now

P([Xn = kn]”Xl = kl] e [Xu—l = kn—l])
= [ PUXa = BI1X: = i - Ko = il Taca = 7) AP, (0).
By means of Lemmas 3 and 5 we find that the integrand above equals

0 t

f {exp b mo)\f ¢N(0) dﬂ} mo)\k,,+1¢N(t) dt

; 0 2 t b

Jzof {exp —_ ’Inolf ¢N(0) dﬂ} ’Ino)\jgo;v(t) dt

where mo = N + ky + - -+ =+ ka1 . This ratio equals M\, +1/A, and this observation
concludes the proof.

It should be mentioned in passing that Yy(¢), X;, X2, -+ are indeed random
variables, ie., [Yx(¢) £ 2], [Xi = z], [X2 S ], --+ are all events which are
formed by countable set-theoretic operations on events whose probabilities
were given in Section 2. Indeed, let k; be an integer, k; = —1,1 < ¢ < m, and
let £ > 0. Let us denote Aoy, as the event that no particles split during
[0, (i — 1)/2™], Ai.(j:;) as the event that no particles split during
/2", (joyr — 1)t/27], 1 £ © < m, Ap.n(jm) as the event that no particles split
during [jmt/2", {], and B;.(k;) as the event that just one particle splits during
[(4: — 1)t/2", j#/2"] and splits into k; particles. Then

m—1

n[X "'kj]— n U U e U AOnnAzn(]s) nBrn(k)
n=1 ji1=1 jo=j1+1 im=im-1+1
Also,
0 © o g(1) 8(2) 8(m)
[Yn(t) = m] = n U e U U . U e U AO n n (Ai n(]t)Bc n(k ))
n=1ky=—1 km=—1 j1=1 jo=j1+1 Im=im-1+1

where s(¢) = 2" — (m + 1) +1i,1 £ 7 £ m. The above two equations verify
that Yx(t), X1, X2, - -+ are random variables.

4. The limit distribution of the process Xy(tf). Let {U,(t)} be a sequence of
stochastic processes, where t¢ T, T being some interval of real numbers. We
say that this sequence converges in disiribuiion to the stochastic process U(t)
if for every positive integer m, every m-tuple {#, ---, .} < T, and every
m-tuple {w1, *+, Un} € (— o, ©) which is a continuity point of the joint dis-
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tribution function of U(t), - - -, U(tn),

- P () (0260 5 wd) = P (010G 5 w).
i=1 i=1
The purpose of this section is to show that the sequence of stochastic processes
{Xy(t) — N,N = 1,2, ---} converges in distribution as N — « to a stochastic
process with independent increments.
THEOREM 1. For every non-negative integer k and every integer n; = —1,1 < i < k,

(11) limy.q P[Yn(t) = k] = 9 (ud(2))*/k!
and
k k
12 timeen P () = 01700 = B) = IT Guas).
Proor. We first note that if a;;(N) = 0, b;; = Ofor¢,j, N = 1,2, ---,if
a2 by = L if a(N) = 2224 274 ay(N) = 1 for every N, and if

aij(N) — bi; as N — o for every 4, j, then a(N) —> 1 as N — o and 2 24
ai;(N) — 2.2, bi; as N — oo for every j.

Let us denote

K = IkI {(N + :Z: n,~> ) ¢N(ti)} ,

=1

L = E{exp - (N + JZ;;m) A f““@v(ﬁ) dﬁ}’,

s

31
R =exp — Nx'/ ox(6) d, and
0

k t
W=exp—<N+Zln.->)\f‘ on(0) db.
1= k

Using Lemma 3 and Lemma, 5 one is able to establish that

t

k t t
P ([YN(t) =K N X = n,~]> = / dty | dta--- | RELW di.
=1 0 &

tk—1

Using the Lebesgue dominated convergence theorem we obtain

limy., P ([Yn(t) = Ic]i]1 X: = n.~]>

con[ e [0 8] () [0 [ [ (f1)
= ¢ %" (I:I1 v,,,.+1> o*(t) /k\. ]

This limit and the first sentence of this proof imply (11) and (12).
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LEmMMA 6. Let {(Yyu1, -+, Yar)} be a sequence of k-dimensional random
variables which converges in distribution to (Y, -+, Yi). If Spj = Yua1 + -+ +
Yai, 127Skn=12---,andifS; = Y1+ - + Y;, then the joint dis-
tribution of (Sna, -+, Sax) converges to the joint distribution of (Si, -+, Sk)
asn — o,

Proor. By hypothesis, for every k-tuple of reals (ui, us, -+, ux) we have
k k
E(expiZu,-Y,.,,-) —»E(expiZqu,) as n — oo,
i=1 J=1

Deﬁneu,-=t,~-|—t,-+1+ s +tk,1 éjék.Then

k k
E (exp T Zl t; Sn,j> — E (expi Zl t; S,)
I= J=
as n — o, for every k-tuple (#,, ---, &) of reals, which concludes the proof.

We are now able to establish the limit distribution of Xy(¢) — N.

TaeEorREM 2. Under the hypotheses of Section 2, the stochastic processes
{Xy(t) — N} converge in distribution to a stochastic process with independent
increments whose distribution is determined by (8) and (9).

Proor. Let fy(u) denote the characteristic function of Xx(t) — N. We shall
first show that, for fixed ¢ and u, limuy,. fx(u) = ¥(u), where Y(u) is defined
in (8). We first observe that

L

S A B (oxp L) — W20 = H ) 1K = nd)
P (01 = a0 = B)} PO = 1

- é {Z’ exp [W é n,] P (61 [X; = nd | [Ya(t) = k])} P[Y.(t) = K],

where the sum Y is taken over integers n; = —1, 1 < ¢ < k. By Theorem
1 and the Helly-Bray theorem,
k k
iy 3 exp [0 3 | P (1 = nd (V) = 1) = ),
j=1 i=1

where f(u) = Y m——1 € vms1/v. Then by Lemma 4 and Theorem 1 we obtain
lim f(u) = 2o FH(w)e” " 2(0) /Rl = ¥(w).
=0

We now prove that the process Xx(t) — N converges ¢n distribution to a process
with independent increments. Let 0 = # < t; < t < +++ < tn < --- be any
increasing sequence of non-negative numbers, and let U; = Xx(f;) — Xn(tio1).
The joint characteristic function of Uy, -+, Un is given by

forealin, i) = 3o o 3 e [iwk e (0= k).

ky=—o0 ko pp=—00 s=1
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We shall now prove that
(13) iy fuy oor v (U s 0 5 Um) = I,_Ilfi(ui),

where fi(u) = exp{®(t;)) — ®(tia)} Donco (¥ % — 1)
We may write
(14) fo, oo v (U, =+, Um) =

Zk exp [z g ujlc,-:l .I:]; P <[U1,' = ki | :[;11 (U; = lc,~]> .

100 9 km

Let X(¢) denote a process with independent increments whose distribution is
given by (8) and (9), and let pj(k) = P[X(#;) — X(4-1) = k]. Since
limyoew (N + 2oii ke)ha = vpand limy, (N 4+ S k)N =vfor0 <j < m— 1,
we obtain by what was proved just above (13)

i—1

limy,, P ([Ui =k | _n1 [U; = kj]) = pik;) for 1 =1 = m.
J=

Applying the Helly-Bray theorem to (14) we obtain (13). By Lemma 6 we may
conclude that the joint distribution of {Xx(#), - -, X~(ts)} converges to the
joint distribution of {X(#), - -+, X(¢s)}.
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