BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II

By RicHARD E. BARLOW! AND ALBERT W. MARSHALL
University of California, Berkeley, and Boeing Scientific Research Laboratories

1. Introduction. In the preceding paper, which we will refer to as “I”, we
have derived improvements of Markov’s inequality under the condition that
F has a monotone hazard rate. These results are based on the assumption that
for some monotone function ¢, [o- () dF(z) = »is known (typically, ¢(z) =
2", in which case we denote » by u,). In Section 3 of the present paper, we derive
similar inequalities for the case that u; and us are both known. These results
may be regarded as improvements, made possible by the assumption of a mono-
tone hazard rate, of the following inequality given by Chebyshev (1874): If F
is a probability distribution such that F#(0—) = 0 and f o x dF(x) = pp,r =
1,2 and w; = 1, then

1—F@) <1, 0<t=1
(1.1) =t 1<t<up
< (we— 1)/l — 14 (1 — 1)}, t = pg;
1—F(t) =2 (1 —8)[ue — 14 (1= 28)7, 0<t=1

(1.2)
>0, {2 1.

Improvements of (1.1) and (1.2) have also been obtained by Royden (1953),
who assumed that F is concave on [0, « ) (see (6.1) and (6.2)).

The method used in this paper differs from those of I and can be utilized to
provide alternate proofs of the results given there. However, we have not been
able to obtain the results of this paper by the more straightforward methods
of I.

In Section 5, we again consider the problem discussed in I of improving
Markov’s inequality, but in this paper we assume that F has a density f which
is a Pélya frequency function of order 2 (PF.). Again, the methods of I do not
seem to be useful, but the result is obtained by a method similar to that used in
Section 3.

Throughout this paper we assume unless otherwise stated that distribution
functions are left continuous.

2. The method of proof. Let § be a family of probability distributions.
Call g C ¥ extremal for & on T if for each ¢ ¢ T and F ¢, there exists G ¢ G
such that F(¢) = G(t). If G is extremal for § and F ¢ &, then clearly

infg G(¢) < F(t) < supg G(t).

Received 20 June 1963; revised 30 April 1964.
1 Work done under the auspices of Boeing Scientific Research Laboratories.

1258

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to |

£

The Annals of Mathematical Statistics. RINGIS ®

www.jstor.org



MONOTONE HAZARD RATE, II 1259

If the family G is sufficiently small, the bound may not be difficult to obtain.
Similar methods have been used by Royden (1953) and Mallows (1956).

Our proofs that G is extremal involve a parameterization of G: G = {Ga:a € I}.
We single out a crossing of F and G, , and show that this crossing must occur at
each ¢ ¢ T as o« ranges over I. Although this is conceptually simple, it is usually
difficult to rigorize. '

Ezample 2.1. Let § be the class of distributions F where F is convex on its
interval of support and satisfies F(0) = 0, [ 2 dF (z) = w1 . Let § = {Ga:0 =
a = i}, where

G.(z) = 0, z < a
= (z — a)/2(m — ), a2 =22m—a
=1, T =2m — o

Suppose that F ¢F. Then F and G, have at most two crossings. If there is a
crossing of F by G, from below, denote this crossing point by u, ; otherwise,

1

F1a. 2.1

let u, = a. Then since G, is the uniform distribution on [0, 2u], wo = 0, and
since G,, is degenerate at w1, u,, = mi. It is clear that u, is continuous in «
(we make no attempt at a rigorous proof) so the crossing u. must range over
the interval T = [0, ui] as « ranges over the same interval. For 0 < ¢ = i, we
compute SuPo<a s, Ga(t) = Go(t) = t/2um and conclude that

(2.1) F(t) < t/2u, t=m.

Ezample 2.2. Let § be the class of IHR distributions satisfying #(0) = 0,
and [7 ¢(z) dF(z) = », where {(x) is increasing on [0, «).
Let G1 = {Gu:0 < w < {7 (v)}, where
1 - Gw(x) = 1, ‘ x

_ e-—-a (z—w)

I\

(2.2)

I
8
%

and a is determined by

(2:3) [ " t(2) dGu(z) = ».
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Let G = {Gu:{ ' (v) £ w}, where

1—Gu(z) =¢™ 0Zz=w
(2.4)
=0, T =w,
and b is also determined by the moment condition (2.3). Then G; C F, and we
wish to show that G, U G, is extremal for &.

Let FeF — (G U G). Since [5 ¢(z) dF(z) = [5 ¢(x) dGy(x), F and G, cross
at least once; since F is ITHR, they cross at most twice (1 — F is log concave,
and 1 — G, is essentially log linear). Let v, be the crossing from above of 1 —
G,(z) by 1 — F(z) if such a crossing exists, and otherwise, let v, = .

1

!
0 w ) Yo=Y Y

Fic. 2.3

Note that Gy-1(,) is degenerate at {*(»), and Gy = G, is exponential.

If we decrease w from « to {*(»), then v, decreases from v, = v, to zero (see
Figure 2.2). If we then decrease w from {™'(») to zero, v, decreases from v;-1,
= o to ¥ = v, (see Figure 2.3).

A proof that v, is continuous in w (which we do not include) would complete
the argument that ¢ = G, U G, is extremal for §, so that

infg G(t) < F(2) < supg G(0).

Further pursuit of this leads to Lemmas 3.1 and 3.4 of 1.
In case {(z) = =z, we obtain from (2.3) with u; = 1 thata = (1 — w)™".
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If t < 1, infeeguug, [1 — G(¢)] = ming<wgiexp[—(t — w)/(1 — w)] = €,
which is (3.8) of I with » = 1.
Note that for G, in G,

p2=2‘£mx[1_Gw(x)]dx= 1+ (1—'6())2,

and as w ranges over [0, 1], us ranges over [1, 2]. But for any IHR distribution,
ui < up < 27 ,and since 1 — G,(1) = ¢ forall w, we see that ¢~ is a sharp lower
bound for 1 — F(u;) whenever F is IHR with mean u, , regardless of the specified
value of u. .

3. Bounds for 1 — F when F is IHR. In this section, we obtain upper and
lower bounds for 1 — F(¢) in terms of p; and ue . For convenience, take u; = 1,
and fix us. Recall that F THR implies ] < p £ 2u] (Barlow, Marshall and
Proschan (1963)).

In order to define the extremal distributions for this problem, let Ty = 1 —
(u2 — 1)} and let

1 — Gr(x) = ™, t =T,

=0, t> T,

where ay and 7' are chosen so that Gy, satisfies the moment conditions. These
conditions clearly determine a, and T; uniquely, and yield T; = —aglog(1 — ao)

where a, in [0, 1] satisfies

2—[1+1_“°10g(1—a0):|=u2.
Ao

Qo

Let G = {Gr:T = T} and G = {Gr:To < T < T}, where

1 — Gz(z) =1, 2 <A
(3.1) = o, ASs<T Tam,
=0, z>T
1 — Ge(x) = 6™, s <T
(3.2) . To<T<T,

and (a, A), (a1, a2) are determined by the moment conditions

(33) 1= [ 1~ G,
(34) b fomx (1 — Ge(z)] do.

We defer the proof that solutions of (3.3) and (3.4) uniquelyv exist. These
conditions guarantee that G; U G, £ ,, where . is the class of IHR distributions
F such that F(0) = 0, [¢ zdF(z) = 1, and [§ 2" dF(z) = us.
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A principal result of this section is
TaEOREM 3.1. {(2, 1 — F(2)):FeFa} = {(x,1 — G(x)):GeG U Gy}, and
hence

(3.5) inf[l — G@)] = 1— F(t) <sup [l — G(1)]

where the extremums are taken over G U G, .

Since G; U G, C &, it is clear that (3.5) is sharp, although it is not clear
that equality is attainable.

We defer the proof of Theorem 3.1.

ReMARK. We use repeatedly the fact that the functions cie ™", ce ™*° are
identical or have at most a single crossing (simple intersection).

CoroLrLARY 3.2. Let F be THR, F(0) = 0, and let F have first and second
moments uy = 1, and us . Then

(3.6) 1 — F(t) = infgg, [l — G(t)] = infryr, ¢ *“72, t <1

where a and A are determined by (3.3) and (3.4) as functions of T; 1 — F(t) = ¢,
t =1,

(3.7) 1 — F(t) = infgeg, [1 — G(t)] = infrycrgie @7 =", 1<t< T,

where a; and as are determined by (3.3) and (3.4) as functions of T; 1 — F(t) = 0,
t = T:1. The bounds are sharp.

Proor. For Ty < T < T1,andz = T,1 — Go(x) = 1 — Gr,(2), since other-
wise Gr and Gr,, cannot cross twice. If 77 < 1, then since 1 — Gr(z)
and 1 — Gr,(z) must cross twice, 1 — Gz(T) = 1 — Gr,(T). This together with
1 — Gg(1) = ¢! =1 — Gr(1) (Theorem 3.8, I) implies 1 — Gr(z) = 1 —
Gr,(z), T = z = 1. But G7, = G, and thus (3.6) follows from (3.5).

If T < T < «, then Grand Gz, = G« can cross only once in (0, 7'). Since
1 — Gr(1) = 1 — Gry(1) = ¢, and since 1 — Gr(To) < 1 — Gr,(To) = 1,
this crossing must occur in (To, 1]. Hence 1 — Gr(z) > 1 — Gr,(z) for
1 < z < ¢, and we conclude from (3.5) that 1 — F(¢) = infg, [1 — G(¥)],
T; = t > 1. The remainder of (3.7) follows from the fact that forz < T < T4,
1 — Gr(x) > 1 — Gr,(z) (otherwise Gr and G, cannot cross twice). |

TueorEM 3.3. Let F be IHR, F(0) = 0, and let F have first and second moments
ws = 1 and uz. Then

(3.8) 1—F@) =1, 0=Zt=<To=1— (m— 1)}
(3.9) 1—F(t) £e™, To<t=T,
where a, 1s determined by (3.3) and (3.4) with T = ¢;

(3.10) 1 — F(t) < ¢, t= T,

where a and A are determined by (3.3) and (3.4) with T = t. These bounds are sharp.
Proor. Let us first assume that (3.3) and (3.4) have the required solutions.
It is easily verified from (3.3) and (3.4) with G ¢ G; that limr., A = 1 —
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(2 — 1)} and sharpness of (3.8) follows. Let Ty < ¢ < T, and suppose 1 — F(t)
> ¢ thenl — F(x) > ¢ ™, 0 < x < t. Since F and G, cross at least twice,
this Would force 1 — F(t) and exp [— alt — as(x — t)] to intersect three times
which is impossible. If ¢ = T;, then 1 — F(t) > 1 — G.(t) together with the
fact that F and G, cross at least twice would force F(z) and ¢ *®~* to cross three
times and again we obtain a contradiction. ||

Theorem 3.3 also follows as a corollary of Theorem 3.1, since from Theorem
3.1, we need only show that 1 — G,(¢) = 1 — G,(¢) for all s 5 ¢; but this follows
from the fact that G; and G, must cross twice.

To complete the proof of Theorem 3.3, it is necessary to show that (3.3) and
(3.4) have the required solutions. This proof is given in

LemMmA 3.4. For every T = T, there is a unique solution of (3.3) and (3.4).
Furthermore, these solutions are continuous in T

Proor. Consider first the case that ' > T, ; fix T > T1 , Ael0, 1], and let

a(a, T,A) = a (1 — ") 4+ 4 —1.

Then lim,,, a(a, T, A) = A — 1,limga(a, T,A) =T — 1 =0 (T, = 1) and
dala, T, A)/da < 0 for all a. Therefore ala, T, A) = 0, ie., (3.3) with 7 = T,
has a unique solutiona = a(T', A) for each fixed A and T'; furthermore a(a, T', A) < 0
(>0) fora > a(T, A)(<a(T, A)). Let 6 > 0. Then a(a(T,A) — 6, T,A) >0,
a(a(T,A) + 6, T,A) < 0. By continuity of «, there exists &, > 0, &, > 0 (possibly
depending on a, 5, T and A) such that [T — T'| < &, |A — A'| < & implies
a(a(T, A) — 5, T',A") > 0, a(a(T, A) + 8, T, A") < 0. Hence there exists
(T, A, a(T, A) — 6 < a(T',A") < a(T, A) + b, such that a(a(T’,A"), T', A")
= 0. This proves that a(7T, A) is continuous in 7 and A.
Let

K(A, T) = A% — 267%(aT + 1)e ™™ + 24 *(ad + 1)

where a = a(T, A) is determined by (3.3). We want to show that K(A, T') =
us , 1.e. (3.4), has a unique solution A(T') continuous in 7. If A = 0, (3.3) implies
¢ =1 — a,so0that K(0, T) = 2a7 (1 — Te*"), and

0K (0, T)/dT = 2a~ (1 — T)da/dT — a(l — a)] > 0
where 9a/0T = ae *"(1 — Te*")™ = a(l — a)(1 — Te*")7"if
(1 —T)a(l —a)(l — Te®")™" = a(l — a),

which is clear if 0 £ a < 1. But this follows from ¢ = 1 — aand T = 1
Therefore T = T implies

K(,T) 2 K(0,Ty) = p2 = 1 = lima,1 K(A, T').

This implies that K(A, T) = u. has a solution A(7). Uniqueness of A(T)
follows from the fact that for given T, there is at most one element of G; ; two
distributions in G; are identical, or cross exactly twice, and the latter is im-
possible if they correspond to the same T
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Continuity of A(T) follows in the same manner as continuity of a(7T, A).
This completes the proof of Lemma 3.4 in case T > T,.
Let To < T < T, . Solving (3.3) for a, as a function of a; and T, we obtain

w(ar, T) = a6 (o — 1 + ¢,
and substitution in (3.4) yields
h<a1’ T) = {e—alT[I + (2 + lhT)((ll - 1)] + (al - 1)2}/0/%6—‘”7' = ,u2/2-

It is easily verified that A(1, T') = 1 and lima,oh(a:, T) = (1 + (1 — T)*)/2.
Now T = Ty = 1 — (e — 1)} implies (1 + (1 — T)*)/2 < uz/2 < 1. Since h
is continuous, there exists a; = a:(7T) satisfying (a1, T) = uo/2.Furthermore.
by arguments previously used, it can be shown that a:(7) is unique and con-
tinuous. |

If F is IHR, there can be at most two crossings of 1 — F and an exponential.
Furthermore, the crossing points must be well defined, since if 1 — F(z) and
ce ™ coincide for all z in some interval, then 1 — F(z) < ce™™ for all z, and there
can be no crossing. This is a simple consequence of the log concavity of 1 — F.

Proor oF THEOREM 3.1. Let F e 5, — (G U Gy). For T = T4, let r(T') be the
point in (A, T') that 1 — F crosses 1 — Gr from below if such a crossing exists;
otherwise, let 7(T') = A. Let s(T') be the crossing in (A, T') from above of 1 — Gr
by 1 — F if such a crossing exists; otherwise, let s(7') = 7. Note that »(T) =
s(T).

For Ty £ T £ T1,let u(T) be the crossing in (T, « ) from belowof 1 — G
by 1 — F;u(T) always exists. Let v(T) be the crossing in (7', « ) from above of
1 — Gr by 1 — F if such a crossing exists; otherwise let »(T') be the right-hand
endpoint of the support of F.

In order to show that r, s, 4, and v are continuous in the interior of their
range suppose that F and Gy cross at ¢ = zo (in case T = Ty, let oo = T).
Choose ¢ > 0 sufficiently small that [Gr(xo — €) — F(xo — €)][Gr(xo + €) —
F(xo+ ¢)] <0 (and 2 + ¢ < T when T = T,). By Lemma 3.4, G¢() is con-

1

1-Gr,(x)=1-Gigx)

1=Gr,(x)

|
|
|
|
|
|
|
|
|
|
|

|

L 1

o rloo)=u(To) s(n) T=ulTy)  s{oo)=v(Ty) v(Ty)—
Fi1a. 3.1

Ole(r)
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tinuous in T for all z (x < T in case T = T:). Hence there exists § > 0 such that
|T" — T| < & implies [Gr (20 — €) — F(20 — €)][Gr (0 + €) — F(x0 + €)] <O.
This means that G- and F cross in the interval (o — €, &0 + €).

To show that for all 2 < T, there exists 7 such that F and Gr cross at z,
it suffices toshow that limz| 7, 7(7') = 0, limr,w 7(7") = u(To), and limr,r, u(T')
= T;. The second two limits are clear from the definitions. Proof that
limz, r, 7(T) = O is similar to the proof of continuity.

To show that for all x = 7, there exists 7 such that F and Gy cross at z,
we note that s(71) < Ti, limr.e s(T) = v(T%), lims,r, v(7T') = right-hand
endpoint of the support of F.||

1

N\ N

| 3 |
Lo |

‘. n.
] 3 | 3

2 n
o | haNd
: | 5 : ! P
0 v, Uy Un 0 i V2 L Vaw
2
Fia. 3.2. Extremal distributions, n even
1 1 :
1-F(x)
1-G(x)

i X
2 (o] v

Clmmm e
(O

Fia. 3.3. Extremal distributions for n = 3

REMARKS ON GENERALIZATIONS. Let (a1, 2, - - -, ia) be the first n moments
from an IHR distribution . We conjecture that there exists a family of extremal
distributions G with these same moments that are piecewise exponential, with
at most [(n + 3)/2] pieces and the possibility of truncation on the right. The
slopes of the logarithms of the exponential segments together with the endpoints
of the segments produce n + 1 parameters. The extremal family is generated by
varying the single parameter undetermined by the moment conditions.

We conjecture that the u; and v; shown in Figure 3.2 satisfy v1 < w1 = v, =

- = Vm+1, which we have shown to be true for n = 2.

With this conjecture, it is easily seen that at any endpoint w of an exponential
segment, 1 — G(w) = 1 — F(w) with strict inequality providing F # G and
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1 — G(w) < 1. Otherwise, ' and G cannot have the required number of sign
changes (recall that if F and G have n equal moments, they must cross at least n
times).

4. Bounds for 1 — F when F is DHR. Let

1 — Gro(z) = ae ™", O0<z=T
(4.1) 0ST=<w
— ae——agx+(a2-—a‘)1', z g T,
where
(42) 1= f [1 — Griu(2)] de,
0
(4.3) w/2= [ 2l = Gre(@)]do.

Following the proof of Lemma 3.4, we conclude that for every 7' = 0 and every
o, 2uz" < a = 1, there exists a; and a; satisfying (4.2) and (4.3). Note that

1-— Gw;z,,z—l(x) = 2;1;16‘211”2, x> 0.
Note that Gr,, is DHR (a; = as) if 2 = 2.

TureoreM 4.1. If F ¢s DHR, F(0) = 0 and if F has first and second moments
M1 = landm,then

1—F(t+) = 2u ', t=0

44)
( e—-al t, t > 0’

1%

where a, 1s determined by (4.2) and (4.3) with o« = 1 and T = t. The bound is
sharp.

Note that since F' is DHR, u, = 2.

Proor. Since F and Gu;2;1 have the same first two moments, they cross at
least twice. Since F is DHR there are exactly two crossings, and the first crossing
0of 1 — Guyz71 by 1 — F must be from above. Hence 1 — F(0+) = 2uz". Now let
¢t > 0 and suppose that 1 — F(f) < 1 — G¢1(t). Then since 1 — F(0+) <1 —
G:1(0), F and G.;; can cross at most once in [0, ¢], and it follows from 1 — F(t) <
1 — @;1(t) that there are no crossings in [0, ¢]. Since 1 — F(¢) < 1 — Gy1(t),
there can be at most one crossing of F and G in (¢, « ). Hence F and G,
cross at most once in [0, » ), contradicting the assumption that they have the
same first two moments.||

A sketch of log 1 — F,log 1 — Gy and log 1 — Ge;g;1 should make the above
proof clear.

TaroreM 4.2. If F is DHR, F(0) = 0 and F has first and second moments
w1 = 1 and ug, then
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1—F@) ¢, 0<t=1
&5) < ()7 1<t = /2
< 2up e, ue/2 St =
= supocr<: 1 — Gra(l), > po.

These bounds are sharp.

Proor. Recall from (3.13) of I that

1—F(t) <¢, t=1
< ()7 t= 1.

We wish to show these bounds are sharp for ¢ < us/2. Let a1, a; and o be de-
termined by (4.2) and (4.3), and assume that u > 2 (so that F is not ex-
ponential). By (4.3), limzr,« Taz e ™7 < pp/2a < ®,s0 that limyr,., az'e ™"

0. Hence from (4.2),

T
1 = limgsw [ af e dr + ay e—“lT:I
0

ax

which implies limr., @1 = a. This means that limz,, 1 — Gr(z) = ae ™.
Since limz,w 1 — Gra(t) = €, (4.5) is sharp for ¢ < 1. Since limr,, 1 —
Grye(t) = (te)™, (4.5) issharp for 1 < ¢ < ps/2. Note that for t = us/2, equality
is attained by the distribution 1 — Ge;o;t .

Next, recall from (3.13) of I that

1 — F(t) £ 2¢ o/t t = 2ub;

this proves (4.5) for ¢t = up . Equality is attained in (4.5) for ¢ = . again by the
distribution 1 — G251 -

We have shown that 1 — F(t) < 1 — Guy1(8) for ¢ = pp/2 and ¢t = u,.
Since F is DHR, this implies 1 — F(t) = 1 — Guyay1(t) for all ¢ in [us/2, ps,
so that (4.5) holds for ps/2 = t < us .

Finally, we consider the case { > uz . Since 1 — F(0) = 1 — Gr7.1(0), there is
at most one crossing of 1 — Gr,1 by 1 — F in (0, T], and hence there is a first
crossing u(T') to the right of 7. Since 1 — Gr,,(T) = 1 — F(T') by (4.4), this
crossing is from above. Since u(7T) > T, limr., u(T) = . Since limz.o1 —
Gra(z) = 1 — Guygz1(2), limz,o 1 — Groa(pe) = 2u3’¢ " = 1 — F(u2), and hence
limzao u(T) £ we. By arguments similar to those of Section 3, it follows that
u(T) is continuous in 7', so that for every ¢ > uz, there exists T < ¢ such that
w(T) = t,thatis, 1 — Gra(t) = 1 — F(2).]|

We remark that the bounds of (4.5) are sharp with the additional assumption
that F(0+) = 0. However, it may be that the bound can only be approximated,
and equality is unattainable.

5. Upper bounds for 1 — F when f is PF,. In this section, we obtain a sharp
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upper bound for 1 — F(t), given a single expectation [7 ¢(z) dF(x) = v (¢
monotone), when F(0) = 0 and F has a density f that is a Pélya frequency func-
tion of order 2 (PF,). Briefly, f is PF, if log f(x) is concave on the support of F,
an interval (see Schoenberg (1951) for a precise definition). The condition that f
is PF, implies that F is IHR (Barlow, Marshall, Proschan (1963)), so that the
result here is a sharpening of inequality (3.5) of I.

Under the condition that f is PF, , no sharpening of (3.1) of I is possible, since
the extremal distributions there are exponential, and therefore have PF, (indeed,
PF,,) densities.

Let

Gn(z;b) = (1 — e ™)/(1 — ™), O0sz=m

=1, > m,

for m > 0 and b # 0; let Go(x; 0) = limy.o Gu(x; b). This distribution has a
density

gm(z3b) = be /(1 — &™), 0<z=m

=0, . elsewhere,

which is obtained by truncating an exponential density. Hence ¢, is PF,.

TuEOREM 5.1. Let f be a PF, density such that f(x) = 0 for x < 0. Let ¢ be a
function continuous and strictly increasing on [0, ») such that [v ¢(x) dF (z) = »
exists finitely. Then for each m > {'(v), there exists a unique bn, satisfying

(5.1) [ ¢@) dGuta;ba) = v
0
Furthermore, for all t > 0,
1—F(t) £1, t< ()
(5.2) —1
S SUPmz ¢ [1 — Gu(t; bu)l, tz ().

In the case that {(z) = z, this bound has been computed numerically, and is
graphed in Figure 6.1 of I. Here we have the explicit bound 1 — F(u) < 1 — ¢
Since f is PF., F is also log concave and this result follows from Jensen’s in-
equality (see the remark following Theorem 3.8 of I).

Before proving Theorem 5.1, we prove some useful lemmas.

LemMa 5.2. [ ¢(z) dGn(x; b) = ®(b, m) 1is continuous in b for fixed m and
continuous i m for fixed b.

ProoF. Since limy.se Go(;0) = Gz, b™), and limpy.ms Gu(z; b) = Gue(z; b)
for all m* > 0 and all b* the theorem follows from the Helly-Bray lemma
(Logve (1960) p. 182).||

LeMMma 5.3. For allm > 0 and v £ [£(0), {(m)] there exists a unique by, satisfy-
ing (5.1).

Proor. We first show that G.(x; b) is strictly increasing in b for each z < m.
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If b > 0, 9Gw(; b)/8b > 0 if and only if ¢(z) > o(m) where o(2) = 26 >/
(1 —¢ ’”) But ¢'(2) = ¢ (1 — bz — ¢ *)/(1 — ¢ ) < 0 for all bz = 0.
Hence forz < mand b # 0, p(z) > ¢(m). If b = 0, then 8G.(x;b)/db [s—0 =
z(m — x)/2m > 0 for x < m. Thus Gn(x; b) is strictly increasing in b for each
z < m, and hence ®(b, m) = [ {(x) dGn(z, b) is strictly decreasing in b (since
¢ is increasing). Since ®(b, m) is continuous in b by Lemma 5.2, it remains only
to show that lim,, [ ¢(2) dGn(z; b) = £(0) and limy,_o, [ {(z) dGm(z; b) =
¢(m). But this follows by the Helly-Bray lemma, since

liMpsw Gu(2;0) =0, 2 <0 and limp, o Gu(z;0) =0, o <m
=1 z>0, =1, z2=ml|

For convenience, we introduce the notation g.(z) = gm(z; bn).

LEMMA 5.4. gn(t) 7s continuous in m = t.

Proor. It is sufficient to show that b,, is continuous in m, where b,, is deter-
mined by (5.1). Let ¢ > 0 and fix m. Since ®(b, m) is decreasing in b (see the
proof of Lemma 5.3), and since ® is continuous in b (Lemma 5.2), there exists
n > 0 such that ®(b, + ¢, m) > v — n and ®(bn, — e,m) < v+ 7. Now smcecb
is continuous in m, there eXISts 8 > Osuch that [m — m’| < &implies ®(bn + ¢, m "
>v— 29 P(bn — e,m ') < » + 2¢. Then by monotonicity and contmulty of ®,

b € (D — € bm + €). That is, [bp — bne| < e whenever |m — m'| < &.]|

Suppose that for all m, f 5 g, . Then g. crosses f exactly once from below;
since log f(x) is concave and log g.(x) is linear in z ¢ [0, m), there is at most one
such crossing (see Karlin, Proschan and Barlow (1961)). By (5.1), F and Gn
must cross at least once (f and g,, must cross twice) so that there exists at least
one such crossmg Denote the unique such crossing point by x *(m).

Lemma 5.5. z*(m) is contmuous m m.

Proor. Fix m and let z*(m) = z*. Since g,, crosses f from below at z*, there
exists e > 0 such that

f(z) — gu(z) > 0, ¥ —2 <z <a”
<0, e <z <az¥ 4 2

Let 2¢ = min {[f(x — €) + gn(z* — ©)], [gu(z” + &) — f(z* + ¢)]}. Since gn(@)
is continuous in m > z for fixed z, there exists > 0 such that |m — m'| < &
implies |gn(2) — g (z)| < nforz = z* & e. Then

f(z* + €) — g (2™ + )]

2 |f@* 4+ ) — gu(@® + )] — lgn(” + &) — gm (" + )| > 1,
[f(a* — &) — gm(z™ — €

2 [f(a* — ) — gn(z" — )] — lgn(z® — €) — gn(z" — )| > n.

By contlnulty (in z) of f(x) and gmr(x), g*(m') e (x*(m) — ¢ a*(m) + ¢);
ie., |m — m'| < & implies [¢*(m) — z¥(m)| < &/
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Proor or THEOREM 5.1. We suppose without loss of generality that f = gn
for all m > 0 and consider the case that ¢t = {'(»). Since fﬁ‘(x) dF(z) = v,
it follows that ¢(0) < »,and form = ¢t = {'(v), » £ {(m). Thus b,, satisfying
(5.1) exists uniquely by Lemma 5.3 for all m = ¢. Now assume that ¢ < z*( )
(otherwise the theorem is obvious). Clearly z*(t) < ¢. Hence by Lemma 5.5
there exists mo such that ™ (mo) = t. Since g, is logarithmically linear inz < ms,
fand g., can cross at most twice in (0, my). If there are two such crossings, then
since gm, crosses f from below at ¢, the other crossing point x; satisfies z; < ¢. If
there is only one such crossing (at ¢ by choice of my), let z; = 0. Then in either
case,

(5.3) f(@) < gm(z), O<z<21 Or t<2<m
' Z gmp(z), 1< <t Or T> M.

Let l(x) = a + B¢(x), where 8 = [f(mo) — ¢(21)] " and o = —{(x1)B.
Then xit,«)(2) — I(x) changes sign with f(z) — gm,(2)(Xit,) 15 the indicator
function of [¢, « )), and consequently

(5.4) Xt (2) = UD)]F(2) = gmy(2)] < 0.
Integration on z from 0 to « yields [¥ f(z) dz < [7 gm(z) da.||

2x)

Fia. 5.2



MONOTONE HAZARD RATE, II 1271

TaEOREM 5.5. Inequality (5.2) is sharp.

Proor. In case v < {(t) the theorem is obvious; in case » > {(¢), equality is
attained by the distribution degenerate at ». This degenerate distribution can
ocecur in many ways as a limit of distributions with PF, densities. ||

CoOROLLARY 5.6. Let f be a PF. denstty such that f(z) = 0, x < 0, and such that
f ¢f(x) de = p. If ¢ is a function continuous and strictly increasing on [0, =),
then

(5.5) [ t@i@) do 2 infuss [ $(2) gules ea) da,
where for each m > 1, cn ts uniquely determined by
14
(5.6) f gn(; Cm) dz = P.
0

Proor. G,(t;¢) is strictly increasing in ¢ (see the proof of Lemma 5.3),
limesw Gu(t; ¢) = 1 and for ¢ < m, lime,_o Gn(¢; ¢) = 0. Hence (5.6) has a
unique solution ¢, for each m > ¢ and p € (0, 1).

Consider now the case that {(¢) = » =, f3° &(x)f(x) dz. Let mo be as defined
in the proof of Theorem 5.1. Then by (5.4), Guy(8; bm,) < F(£) = Guy(t; Cmy)
80 that Gu,(z; bmy) = Guy(x; Cmy) for all xz. This together with monotonicity
of ¢ yields

[[s@1) do = [ (@) gmlasm) a5 2 [ 52) g3 m) ds

= ]'nfm>tf gm(«’l’; Cm) d.
o

Next suppose that ¢(¢) < ». Since, for fixed ¢, limn, | . Gu(t; ¢) = 1, it follows that
limp | ¢ cn = — . Since { is continuous at ¢, limy, | , I t(@)gm(x; en) de = £(1) <
J% ¢(@) (@) da.|

Theorem 5.1 remains true if ¢ is strictly decreasing rather than increasing.
In this case, the statements of the lemmas remain unchanged and the proofs
require only minor modifications. Inequality (5.4) is replaced by

[xw,a(2) — W@)]f(@) — gme(2)] 2 O,

where I(z) = & + Bi(z) and 8 = [((z1) — {(mo)]™, @ = —i(mo)B. If ¢ is
decreasing rather than increasing, the direction of inequality (5.5) is reversed,
and the infimum is replaced by supremum.

For Theorem 5.1, the continuity of ¢ was used only for the applications of the
Helly-Bray lemma in Lemmas 5.2 and 5.3. This condition can be relaxed, as
can the condition that ¢ be strictly monotone. In particular, (5.2) holds if for
some s > ¢, {(x) = xpo(z) (e, if » is a percentile).

We remark that for ¢ = »,

(5.7) I 2 g.(8).
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This inequality follows from arguments similar to those advanced in the discus-
sion preceding Lemma 5.5. Further bounds for densities will appear in a forth-
coming paper by the authors.

Note that g» is not PF5 . This means that in case f is PF; , inequality (5.2) is not
sharp, but can be improved.

6. Some numerical comparisons. Extensive tables of the various bounds ob-
tained in this paper are given by Barlow and Marshall (1963). We present here
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Fie. 6.1. Upper and lower bounds for 1 — F(t), s = 1, p2 = 1.2
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F1a. 6.2. Upper and lower bounds for 1 — F(t),m = 1, uo = 1.5

lLlL[II
1.5



MONOTONE HAZARD RATE, II 1273

08—

CHEBYSHEV

F1a. 6.3. Upper and lower bounds for 1 — F(¢), s = 1, uo = 1.8

0.8

0.6

F CONCAVE
DHR

F1a. 6.4. Upper and lower bounds for 1 — F(¢),u1 = 1, us = 3

some numerical results in the form of graphs, and make some comparisons with
the bounds of Chebyshev (1874) and Royden (1953).

The Chebyshev bounds have been given in (1.1) and (1.2). Royden’s im-
provement for the case that F is concave on [0, « ) are:
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1—F(t) £1—1/2, 0<t=<1
(61) < (@)™ 1<t =3uwm/4
' < 4(3ue — 20) /943, Bu/d S L=<
< (Bue — 4)/14(30° — 4a) + 3pd, t= pe,

where a is the unique root = #/2 of t = 16a’(a — 1)/[4(3¢" — 4a) + 3uJl;
1—F(t) 2 (2— 8)"/(3u — 20), 0<t=2

(6.2)

2 0, t> 2.

Figures 6.1, 6.2, and 6.3 show the upper and lower bounds of Chebyshev
(1.1), (1.2) together with their IHR improvements given in Corollary 3.2 and
Theorem 3.3. The striking improvement in the IHR case with u, = 1.8 is par-
tially explained by the fact that if F is IHR with y; = 1 and w2 = 2, then F is
exponential.

Figure 6.4 for u; = 1, u» = 3 shows the sharp upper and lower bounds of
Chebyshev ((1.1), (1.2)), their improvements in case f is decreasing (F is
concave) on [0, =), ((6.1), (6.2)), and their further improvements in case F
is DHR, given in Theorems 4.5 and 4.6 (recall that F DHR implies F concave).

Incasefis PFs, {(x) = zand y; = 1 the bound given in (5.2) has been graphed
in Figure 6.1 of 1.
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