POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS!

By G. K. EAGLESON
University of Sydney

1. Introduction. Bivariate distributions subject to the condition of ¢2 bounded-
ness, to be defined later, may be expanded in a canonical form (e.g. Lancaster [3]).
In this paper, a class of bivariate distributions, whose canonical variables are the
orthonormal polynomials of the marginal distributions, is exhibited. This class
consists of the bivariate normal, a bivariate gamma, Poisson, negative binomial,
binomial and hypergeometric.

The identity in Hermite-Chebyshev polynomials due to Runge [7] is generalised
to this class of distributions, which have a particular type of generating func-
tion for the orthogonal polynomials. The completeness of the orthogonal poly-
nomials of the same class is also proved.

The bivariate distributions are generated by considering sums of independent
random variables, which are “additive” (i.e. closed under convolutions), where
some of the variables are held in common. Pearson [6] generates the bivariate
normal in this way and Cherian [1] a bivariate gamma.

The conditions on the parameters, in order that the distributions be ¢* bounded,
are obtained. The regressions are shown to be linear and the correlation co-
efficient is seen to be a satisfactory measure of dependence. Finally, a goodness
of fit test for these bivariate distributions is outlined.

2. Distributions with a particular form of generating function for the or-
thogonal polynomials. Meixner [5] considered those distributions which have
a generating function for their orthogonal polynomials of the form

(2.1) G(t, ) = f(1)e™? = X Pu(z)l/n!
n=0
where P,(z) = 2" + @n12” 4+ -+ + @nn, f(t) is a power series in ¢ with

f(0) = 1 and u(t) is a power series in ¢ with 4(0) = 0 and %'(0) = 1. Both
f(t) and u(t) have real coefficients. We denote the functional inverse of w(¢)
by v(u), i.e. v(u(¢)) = i{. When needed, subscripts will be used on f(¢) and
u(t) to indicate with which distribution they are associated. Thus

Za f()f(s) explau(t) + zu(s)} d(z) 3}
22) = FOFM (D) + w(s)) = 3 1t8) (1)

where ¢; = [2, Pi(z) dy(x), ¢(z) is the distribution function of X, and M () =
E(*).
Received 27 November 1963.
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TueorEM 2.1. The moment generating function (m.g.f.) of {P.(x) d¢(x)} is
(00T {I(6)) /it e: -

Proor.

% RO W) = [ 3 P da)
= [)IT(8)f(t) [ 2 expla(u(s) + u(t))} d¥(z),  where u(s) = 6,
= YIS e/ (i1

The theorem follows from equating coefficients of #*/3!.

COROLLARY 1. The m.g.f. of dy(z) is [f(v(6))] " as ¢, = 1.

CoROLLARY 2. The only frequency function g(x) whose orthogonal polynomials
are of the form g(z)Py(z) = b:D*(g(x)) and which has the above form of generating
function is the normal. )

Proor. If g(z)Pi(z) = b:D*(g(z)), then the m.g.f. of Pi(x)g(z) is b#® X m.g.f.
of g(z),1.e. u(8) = 6. But Meixner shows that the only distribution with u(¢) = ¢
is the normal.

Meixner obtains the following recurrence relation for the orthogonal poly-
nomials:

Pra(z) = (& — p 4+ nN)Pa(x) + niks + (n — 1)} Paa(x),

2.3)
( n:O,l’...

where k; < 0, k < 0 and g, which is the mean, can without loss of generality be
made zero. He also obtains two differential equations for f(¢) and v(u):

(2.4) V(w) =1 —=N—«t* = (1 — at)(1 — Bt)
(2.5) FOUOI™ = kat/I(1 — M — )],

LeEMMA 2.1. The constant — ks , which appears in the recurrence relation for the
orthogonal polynomials, is the variance of the weight function.

Proor. From the differential equation (2.5), determining f(¢) we see that
£(0) = 1, f'(0) = 0 and f”(0) = k,. Further () = 6 + v’ + v’ + ---,
for small enough 6. Thus the m.g.f. of the distribution M (8) = [f(»(6))]™ =
1 — kf® + O(6*) for small enough 6. The result follows immediately.

THaEOREM 2.2. Those distributions with the generating function of their orthogonal
polynomials of the form ()™ are additive if and only if u(t) is the same for all
distributions in the class.

Proor. Necessity. We have, from (2.5), log f(¢) = kaw(¢) 4+ a, where w(¢) =
JIt/(1 — n — «’)] dt and a is a constant. If the distributions are additive,
log fx(t) + log fr(t) = log fxy¥(¢). Thus w(¢) must be the same for X and Y,
except at most for a constant factor. Using the Lemma 2.1, we can show that
the constant factor is unity. This implies that 1 — A\t — «¢* and hence v(u) and
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u(t) are the same for all distributions of the class. Sufficiency. This is obvious
from the form of log f(¢).

3. Generalisation of Runge’s identity and completeness.

TaEOREM 3.1. (Generalisation of Runge’s identity) If W, and W, are inde-
pendent and additive variates whose orthogonal polynomials are generated by a
function of the form f(¢)e”*® and if X = Wy + W, then

n

Puta) = 35 () Piw) ).

7=

Proor. W, and W, additive implies that «(¢) is the same for W, W, and X.
Also fx(t) = fwl(t)fwz(t) Thus

iﬂ Pn(x)tn/n, — fx(t)exu(t) - le(t)ewlu(t)fwz(t)ewgu(t)
= i:) P.(w)t"/n! Z::) Po(w)t™/m).

The theorem follows from equating coefficients of ¢".

THEOREM 3.2. The orthogonal polynomials generated by a function of the form
F()e™? are a complete system with respect to the weight distribution.

Proor. If we denote the normalised system by {Px(z)} then a theorem due
to Picone (see Sansone [8]) states that {Pj(x)} is complete if and only if

e

2 [ [Za ™ Ph(z) db(x)] = [Zody(z) = L.

From Theorem 2.1 we have
2w €*Pr(z) dp(z) = [f(a)] " v/ cu/n!

where s = u(a), i.e., @ = v(¢s). Then
LHS. = [f(e)]" X [ m]*;(aa)"c,,/(nz)“’

= 2w explau(a) + zu(a)} db(z) = 1
since f(@) = f(&) and u(@) = u(a) = —is as both f(t) and u(t) are power

series in ¢, with real coefficients.

4, Canonical expansions.
Definition. If F(x, y) is a bivariate distribution function with marginal distri-

butions G(z) and H(y) then we define

(4.1) ¢ + 1 = [ {dF/(dGdH)}dGdH = [ Q’dGdH
where @ = Q(z, y) is the Radon-Nikodym derivative of F(zx, y) with respect to
G(z)H(y).

If F(z, y) is ¢ bounded then complete sets of orthonormal functions, {x‘”}
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and {y”}, can be defined on the marginal distributions such that

(4.2) dF (z,y) = {1 + il p,x(’)y(’)} d@(z) dH(y) a.e.
and
(4.3) ¢ = zw: oL (Lancaster [3])

In this section we consider those bivariate distributions which are generated
from three independent, additive variates. Thus let W,, W, and W3 be inde-
pendently distributed and additive. Take X = W, + W,, Y = W, + W;.
Then X and Y come from the same family as W;, W, and W; but they are
correlated. Their coefficient of correlation is

(4.4) p = var Wy/[(var(W, + Ws)var(W, + Ws))IL

Because of the particular way of obtaining these bivariate distributions, the
coefficient of correlation is a satisfactory measure of dependence, as it is in the
case of the bivariate normal. That is, p = 0 if and only if X and Y are inde-
pendent, and p = 1 if and only if X and Y are linearly dependent.

THEOREM 4.1. If, for a distributzon we have:

(i) the orthogonal polynomials are generated by a function of the form f(t)e™?,

(ii) the distribution is additive and

(iii) a bivariate distribution s generated by using the additive property,
then the matriz of correlations of the pairs of orthonormal polynomials on
the marginals is diagonal. Further p,, = p, depends only on the normalising factor
of the rth orthogonal polynomial.

Proor. We know, Lancaster [4], that a bivariate distribution is completely
characterised a.e. by its marginal distributions and the matrix of correlations of
any pair of complete sets of orthonormal functions on the marginal distributions.
By Theorem 3.2, the systems of orthogonal polynomials are complete on the
marginals. Thus the bivariate distribution is completely determined by the
distributions of z and y and p,, = E(P}(z)Py(y)). But

Vo = 11 (3 (7) it Prson) (5 (5) 2w Prcstnn))

J=

X dyr(wy) dipa(we) dips(ws)
by Theorem 3.1, where ¢;(w;) is the distribution funetion for W,, 7 = 1, 2, 3.
That is,
(4.5) pre = et [l e,

which proves the theorem.
Thus, if the bivariate distribution is ¢* bounded, its frequency funetion is a.e.
equal to the series
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(46) () d(y) {1 > prP*<x>P*<y>} and
(4.7) ¢ = 2 or.

CoROLLARY. For the above bivariate distributions the regression of P¥(z) on
P (y) is linear, for all 3.
Proor. This is an immediate consequence of the form of the canonical vari-

ables.
The above method, however, is not the only way of obtaining bivariate distri-

butions. In fact, there exist an infinity of bivariate distributions with the same
marginal distributions.

5. Examples. If 1 — M — «t2 = (1 — at)(1 — Bt) then the form of « and g8
determines the type of weight distribution. Meixner shows that there only exist
five types of distributions with the given form of generating function. We de-
termine the canonical correlations of the corresponding bivariate distribution for
each of these five types.

Type I a=B=N=k=0.

This is the normal distribution with
dY(z) = (2n0) Pexp[—ic’/d’)de, — oo <z < .
The generating function for the orthogonal polynomials is
G(t, x) = explzt — 10, ke = —d°

and the normalising constants are ¢; = (o°)%l. Now p = corr(X, V)
= o2/[(s1 + 03)(03 + o3)I}, and the rth canonical correlation is
(5.1) o /[P = o

The canonical expansion is just the Mehler expansion of the bivariate normal.

Type IT a=p80.
This is a generalised gamma distribution with

dy(z) « (—x — ko/a) 8 expla/al, —w <z < —k/a,

where a > 0. If we let kz = —pd’, then Y = —X/a is a gamma variable with

parameter p.
The generating function for the orthogonal polynomials is

G(t, ) = (1 — at)™'™ expllat/a(1 — at) + at/(1 — at)]

and the normalising constants are ¢; = 7! T (p + 1)/T'(p). f X /oo = W1+ W,
and Y/a = Wi + W3, where W, is a gamma variable with parameter a;, then
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pr = [['(a2 + 7)/T(a2)][T (a1 + a2)
‘T'(as + a3)/T (a1 + a5 + r)T(as + a5 + 1) < prs

with equality only in the degenerate case a; = a; = 0.

(5.2)

Type I11 a®0, B=«=0.
This is a generalised Poisson distribution where dy(z) is a step function with
saltuses at the points z, = —ky/a — am,n = 0,1, --. and

Y(@n + 0) — Y(x, — 0) = explha/a’](—ks/’)"/nl.
The generating function for the orthogonal polynomials is
Gt z) = (1 — at)™* ™"/ exp[—Ist/a]
and the:normalising constants are ¢; = ¢!(—k;)*. The rth canonical correlation is
(5.3) pr=10p.
Type IV a # B, k # 0, both « and 8 real.

Without loss of generality, let (| > |B|. For 8 > 0, this is a negative binomial
distribution where dy(x) is a step function with saltuses at the points z, =
—ky/a — (¢ — B)n,n = 0,1, ... and if ky/aB = —a

$an +0) = Wan = 0) = (1 = p/a)*(~8/e" (7))
The generating function for the orthogonal polynomials is given by

(a — B8) log G(¢, x) = (k2/B + ) log(1 — Bt) — (ks/o + ) log(1 — at)

and the normalising constants are ¢; = «'8%!T'(a + 3)/ I'(a). The rth canonical
correlation is

pr = [[(a2 + r)/T(as)]
‘[T(a1 + a2)T'(az + a3)/T (a1 + as + r)T(az + as + 7).

For af < 0 and ks/eB an integer, this distribution is the positive binomial
(see Gonin [2]). Thus we can obtain for a bivariate binomial, whose marginals
have the same parameter p, the canonical form in which

pr = [['(az + 1)/T(as — r + 1)]
‘[M(ar+ a2 — 7+ 1)T'(a2 + as — 7 + 1)/T(a1 + a2 + DT (a2 + a5 + 1)]},
where now ¢ = ky/af.

Type V. o # B, k #% 0, both & and B complex conjugates.

(5.4)

(5.5)

Without loss of generality, let 9(a) > 9(8). This is a hypergeometric distribution
with
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dy(z) = (—B/a)"®™”.T((Bz + k)/B(B — @) T((ax + kn)/a(a — B)),

— o < & <  and where |arg(—g/a)| < II.

The generating function of the orthogonal polynomials is the same as that of
Type IV. The normalising constants are ¢; = (e8)%!I'(a + ©)/T(a), where
@ = —ky/aB. The rth canonical correlation is

pr = [T'(as + r)/T(as)]
[T(ar + @)T(az + as)/T(as + @z + r)T(az + as + )]

¢” boundedness. The canonical correlations in the five kinds of bivariate distri-
bution are of two types.
Type (i). p. = p'—the distribution is ¢’ bounded, provided |p| 5 1.
Type (ii).
pr = [T(az + 7)/T(a)][T(a1 + a2)T(az + a5)/T(ar + a5 + T(az + a5 + 7).}

(N.B. The expansion of the bivariate positive binomial is a terminating series
and so the distribution is ¢ bounded.) It is difficult to find necessary and suffi-
cient conditions on the a; in order that the distribution be ¢’ bounded. However,
it is necessary that |p| # 1 (i.e. a1 > 0, a3 > 0) and by comparing D p; with

2.7 (5 > 0) it can be seen that (a; + a3) > 1, a1 > 0, a; > 0 is a suffi-
cient condition for ¢ boundedness.

Goodness of fit tests. As the canonical expansions of the above distributions
are known and the orthonormal polynomials are easily calculated, a goodness
of fit test can be constructed using the method of Lancaster [3] for the bivariate
normal. The total x* is partitioned into a sum of x* due to the fitting of the
marginal distributions, x* due to the regression of the lower orthonormal poly-
nomials in X on those of the same degree in ¥ and a residual x*. The residual
%’ is due to the regression of the orthonormal polynomials in X on those of
different degree in ¥ and may be tested for significance.

(5.6)

Acknowledgments. I wish to acknowledge the help and guidance of Professor
H. O. Lancaster in this work.

Note added in proof. The condition (a; + a3) > 1 is both a necessary and
sufficient condition for ¢? boundedness.

REFERENCES

[1] Cuerian, K. C. (1941). A bivariate correlated gamma type distribution function.
J. Indian Math. Soc. 5 133-144.

[2] Gonin, H. T. (1961). The use of orthogonal polynomials of the positive and negative
binomial frequency functions in curve fitting by Aitken’s method. Biometrika
48 115-123.

[38] Lancaster, H. O. (1958). The structure of bivariate distributions. Ann. Math. Statist.
29 719-736.

[4] Lancaster, H. O. (1963). Correlations and canonical forms of bivariate distributions.
Ann. Math. Statist. 34 532-538.



EXPANSIONS OF BIVARIATE DISTRIBUTIONS 1215

[5] MEIXNER, J. (1934). Orthogonale Polynomsysteme mit einer besonderen Gestalt der
erzeugenden Funktion. J. London Math. Soc. 9 6-13.

[6] PEarson, K. (1896). Mathematical contributions to the theory of evolution. III. Re-
gression, heredity and panmixia. Philos. Trans. Roy. Soc. London Ser. A 187
253-318.

[7] Runge, C. (1914). Uber eine besondere Art von Integralgleichungen. Math. Ann. 76
130-132.

[8] SansonE, G. (1959). Orthogonal Functions. Interscience, New York.



