ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS
OF THE ROOTS OF TWO MATRICES

By K. C. SREEDHARAN PiLral
Purdue University

1. Summary. A lemma is given first which provides an easy method of express-
ing the product of an sth order Vandermonde type determinant and the kth and
ith (k, 1 = 0) powers of the rth and Ath (r, h < s) elementary symmetric func-
tions (esf’s) respectively as a linear compound of determinants. The lemma
extends itself readily to the product of powers of any number of esf’s up to the
sth. Using this lemma and some reduction formulae for certain special types of
Vandermonde type determinants, a second lemma has been proved to show that
certain formulas for the moments of esf’s in s non-null characteristic roots

MO <M=ENE= - £ < «)of a matrix can be easily derived from corre-
sponding formulas for the moments of corresponding esf’s in s non-null roots,
6:;, (0 <6, =< --+- £ 6, <1) of another matrix and vice versa. Illustrations

are given explaining both lemmas.

2. Introduction. Many of the distribution problems in multivariate analysis
are based on the distribution of the non-null characteristic roots of a matrix
derived from sample observations taken from multivariate normal populations.
This distribution given by Fisher [1], Girshick [2], Hsu [3] and Roy [12] is of
the form

(01, 02y -+, 05) = C(s, m, n) 11107(1 - ei)nI;I (0: — 0;)
= i>j

(2.1)
0<6 =+ 26, <1,
where
22) C(s, m,n) = =[] T[(2m + 2n + s + i + 2)/2)/
. =1

{T[(2m + 7 + 1)/2]T[(2n + 7 + 1)/2]T(¢/2)}
and m and n are defined differently for various situations deseribed in [7], [9].
Now, if \; = 6;/(1 — 8;), (¢ = 1,2, ---, s), the joint distribution of the \’s
is obtained from (2.1) as

fl()\l ) A y 't 7>‘8) = C(S) m, n) [Hl )‘:n/(l + >‘i)m+n+s+1] ];I ()\z - )\J)
1= >]

O< M= =M<

(23)
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The studies on the first esf in ’s as well as the \’s have been carried out by
Pillai [6], [8], [9], Pillai and Mijares [10] and Pillai and Samson [11]. Mijares [5]
has carried out some studies on esf’s in general. In this paper, a lemma is proved

which enables one to write down easily the moments of U, , from the respective

moments of V{5 ., and vice versa, where U, and V) , denote the 7th esf’s
in the s \’s and s 6’s respectively. But first, a lemma is given (see next section)
on which will be based the proof of the main lemma showing the easy derivation
of the moments of US’) , from the respective moments of V{5, .

3. Product of a Vandermonde determinant and powers of esf’s. In this section
we introduce the following lemma:

Lemma 1. Let D(gs, go1, ** ,91), (95 =2 0,5 = 1, 2, ---, 8), denote the
determinant

Is—1 g1

xg x?
(3.1) D(ge s geas o+, n) =
2 aft af
If a,(r = s) denotes the rth esf in s 2’s, then
(1)
(32) @D(gs s gots -y 1) = 22 D(gs, gomr, -+, g1),

where g;' =g, +87=12--,s508=0,1and 2. denotes the sum over the
(+) combinations of s g’s taken r at a time for which r indices g; = g; + 1 such
that 8 = 1 whale for other indices g;~ = g; such that § = 0.

(ii)
(33) arahD(gs yJs—1,5 ", gl) = Z” D(g;/, g;,"‘l y " gi’)’

where h < 8,97 = g7 +8,7=1,2,---,88 =0, 1and D" denotes summation
over the () (1) terms obtained by taking h at a time of the s g’s in each D in ' in
(3.2) for which h indices gi = g; + 1 while for other indices g7 = g; .

(i) (a,)*(as)' D(ge, o1, -+, g1), (k, I = 0) can be expressed as a sum of
()" determinants obtained by performing on D(g , go—1, -+ - , g1) in any order
(i) k times and (i) 1 times with r = h.

However, if at least two of .the indices in any determinant are equal, the corre-
sponding term in the summation vanishes.

Before indicating a proof of the lemma, let us consider an illustration. Let us
note first that [4]

(84) @, = . (=1)"avigpep .. Sue/ (171272 <o ™ py | pal - py 1)),

where ). extends over all non-negative values of D1, *++, Dw such that
P42+ - + wp, = w,and s, = 5= 2 . Also note that if we multiply
the right side of (3.1) by ¢"*, differentiate with respect to ¢ once and put ¢ = 0
we get,
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(3.5) suD(gs,Gsm1, " ,01) = ;D(gmgs—l, oy gin s it Ui, e 7gl)°

Now consider the special case, w = 4. We get from (3.4)
(3.6) Ay = s1/4! + 55/8 — s:51/4 + 8185/3 — 84/4.

Using the right side of (3.6) and by repeatedly applying (3.5) with varying
values of u (from 1 to 4) we get

a4D(gB:gB—17 Tt gl)

= b0]Z=:1D(gs7gs—17 e 7gj+1:gi+ 47 gi-15 " :gl)

8

+ b Z D(gs,ge—l,"',gj+3;gj—1,"',gj"l']-,“',gl)

=1
8

+ b . Z D(gsigs~1v"'7gi+27""g:i’+1!"':9.1'” + 1,
(3.7) i#iT#A"=1

"',gl)

8

+ bs Z D(gayge~l:"'ygi+2""7g:i'+27"'sgl>

jAiT=1

8

+ bs Z: D(g"g“l’.“7gf+1:"':gi'+1:"'1gj"+1)

33 A AG=1

")g:i"’+17"',g1)!

where bo=—1/44+1/3 —-1/4+1/8+1/4! =0,
by = 1/3 — 1/2 4+ 4/4! = 0,
by = (1/2D)(—2/4 + 12/4!) = 0,
bs = (1/2))(2/8 — 2/4 + 6/4!) = 0,

and where the indices 7, 7', 77, 7/ are the only ones which have been increased.
Now since in thelast sum on theright sideof (8.7) there are only (3) distinguisha-
ble terms, it is obvious that as D(gs, gs—1, - * , 1) is obtained from (3.7) as a
sum of (3) determinants whose indices are obtained by selecting 4 out of s ¢’s
at a time and increasing each of the 4 selected ¢’s by unity.

Now consider the general case (i). Apply (3.4) to (3.1) with w = r. We can
show that the coefficient of the determinant of a specified set of indices obtained
in this operation such that at least one g on the left side of (3.2) has been in-
creased by more than unity, is equal to zero. For instance, the coefficient of the
determinant with one ¢ index increased by » — j > 1 while any other j ¢’s in-
creased each by unity is given by
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(3.8) (1/41) 20 (=1)r—#Z=dwi[17%2 ... (r — §)Pr=ipy I pyl e Py T = 0,

where p1 +2p: + -+ + (r — f)pr—j =1 — J.

In a similar manner, coefficients of all other determinants with at least one
index increased by more than unity can be shown to be equal to zero. There
remain, therefore, only determinants in which r out of s indices have been in-
creased just by unity. It may be observed that this last set of determinants is
obtained from the term si/r!in (3.4), (w = r), while all other terms arise from
more than one term in (3.4), (w = r), and their coeflicients are obtained as sums
of positive and negative values where each sum (coefficient) equals zero.

Now it may be seen that the truth of (ii) in Lemma 1 can be observed easily
by an application of (3.4) to the right side of (3.2) with w = A.

Similarly (iii) further follows easily by repeated application of (i), as stated
in the lemma, & + [ times, k& times using (3.4), (w = r), and [ times using (3.4)
with w = h. In addition, it may be pointed out that the method of proof extends
itself to generalize (iii) further to include powers of any number of esf’s up to

the sth.
(8)

4. Derivation of moments of U;{), from those of V.2, . In this section we
prove the main lemma, stated below. Let

Vim+s—14a, -, m+q;n)
1
f m+s—l+q, — 08)” dos e / 0:,;+q!(1 - 03)” dos
0 .

(4.1)
- .
f gL — g)" dgy - - f (1 — 6)" doy
0 0
and let
U(m+s— 1+q:;"' ,m+91;73)
o  mts—l+q, @ m+q1
s d)\s . )\8
(42) (I 4+ n)? (1 + A\o)?
m+c—l+q, m+ql
f (1 + )\1)” f 1+ >\1)”
g; =0 i=1,2:--,s and p=m+n+s+ 1L

Now, from Lemma 1 and (2.1), the kth moment il VL), of V8 ., can be
expressed as a linear compound of determinants of the V type in (4.1) where
@s, o1, '+ , ¢ may take different sets of values in different terms. Further,
the coefficients of the linear compound would involve asa common factor C(s,m, n)
but otherwise would be independent of m and n.

Similarly, mﬁ{ U$3) .} can be shown to be a linear compound of the determinants
of the U-type in (4.2) with the coefficients of corresponding terms in this com-
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pound the same as in the previous compound, the correspondence of terms being
marked by the equality of the vector (gs, ¢s—1, - ** , ¢1) in the two compounds.

Now we state the lemma.

LeMMA 2. pi{ USS ) ds dertvable from uf Vo .} by making the following changes
n the expression for the latier (obtained by evaluating the linear compound of V -type
determinants): (a) Multiply by —1 all terms except the term in n in each linear
factor involving n and (b) change n to m + n 4+ s + 1 after performing (a).

Before proving the lemma let us illustrate it by a couple of special cases. Using

(i) of Lemma 1 we get
(4.3) p{Vina = C(s,myn)V(m +s,m—+s—1,---,
. m+s—i+1l,m+s—i—1,---,m-+ 1, m;n).

The right side of (4.3) can be shown to be equal to
(s)i @em+s—73+2)
1) =1 (2m 4+ 2n + 2s — j + 3)

based on some particular cases of determinants evaluated in [10]. From this
result using Lemma 2, the first moment of the sth esf in the N’s is given by

r e o _ (S\TT@m+s—i+2)
(4.5) M1 {Uz(',n)l..n} = (1,) ;[;Il (2n +7 - 1) :

Now consider us{ Vi o). Using (ii) of Lemma 1 with A = r we get
po{ Vi a}
=C(s,m n){Vim +s+1,m+sm-+s—3,-+,m+ 1, m;n)
(4.6) +V(m+s+1,m+s—1,m+s¥2,m+s—4, cee,m 4 1,m;n)
+Vm+sm+s—1l,m+s—2,m+s—3,m+s—25,---,
m + 1, m; n)}.

(44)

Now substituting the values of the determinants [10] in (4.6)

P ss=1)2m+ s)2m + s+ 1)
D b tVimel = o T Gm 20+ 25— 5+ 5)

where
Gy = 6n’{ds(s — 1)m* + 2(s — 1)(28° + s + 8)m + s + 7s* — 8s + 12}
+ 3n{16s(s — 1)m* + 4(s — 1)(88" + 5s + 8)m” + 2(s — 1)

(108* + 12* + 27s + 24)m + 455 + 3s* + 125° + 55" — 24s + 36}
+s(s+1)@2m+s+1)2m+ s+ 2)(m+s)(2m + 25 + 1)
+(=—2Y2m +2s+3)2m +s— 1)

{4sm® + 25(3s + 2)m + 25° + 35’ + s + 6}.
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Using Lemma 2 we get from (4.7),

r ey o _ s(s—1) (2m + s)(2m 4 s 4 1)
(4.8) pe {Usinn} = 37 T 2o+ 7 = 3) G,

where G is obtained from G; by attaching negative sign to the first degree term
in n and then changing n to m + n 4+ s + 1 in all the terms.
Proor. Apply Theorem 3 of [8] to the V-determinant in (4.1). We get

V(m+3—1+9s,“‘7m+91;")
=(m+s+qg+n)T(BY+ @m+s—1+¢)0C?),

(4.9)

where

1
B® = 2}:1(—1)8—j—1V(2m +s+j—-2+¢+q¢;2n+1)

j=s—
(4.10) XVim+s—=24 ¢, ,m+j+ ¢,
m+j—2+gqa, -,m+aq;n)
and
(411) CV=V(m+s—2+qg,m+s—2+ ¢, - ,m+aq;n).
Again, applying Theorem 4 of [8] to the U-determinant in (4.2) we get
(4.12) Um+s—1+¢, - ,m+q;p)
== (m+s+ @@+ (m+s—1+q)R"),
where
QY = 221: (=1)"7U@m+s+7 -2+ +g52p — 1)
(4.13) ol
XUm+s—=2+4¢qa, ,m+7j+ qn,
m+j—2+¢, - ,m+aq;p)
and
(414) RO =Um+s—2+q,m+s8—2+ g, -, m=+ q;p).

First, it may be observed that the factor m 4+ s 4+ ¢, + n in (4.9) becomes
the factor p — (m 4+ s + ¢.) in (4.12) by changes (a) and (b) of the lemma.
Further, repeated application of Theorem 3 of [8] to the right side of (4.9)
would reduce it to a linear compound of terms each of which is a product of s/2
simple beta functions of Type I (V-type) if s is even and (s 4+ 1)/2 beta func-
tions if s is odd. The coefficients of this linear compound would involve products
of functions of m and n of the type (m + j + ¢; + n) ™" and the type (m + j
— 1 + g¢;) as in (4.9). Similarly, repeated application of Theorem 4 of [8] to
the right side of (4.12) would reduce it to a linear compound as above with the
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exception that simple beta functions involved will be of Type II (U-type) in-
stead of Type Iand[p — (m + j + ¢;)] will replace (m + 7 + ¢; + n)~". Now
it may be observed that changes (a) and (b) of the lemma will make the cor-
responding coefficients the same in the two linear compounds which are obtained
after repeated applications of Theorems 3 and 4 of [8] to (4.9) and (4.12) re-
spectively. It remains, therefore, to show that C(s, m, n) times each term of the
linear compound involving products of beta functions of Type I reduces to
C(s, m,n) times the corresponding term in the second linear compound involving
the product of beta functions of Type II using (a) and (b) of the lemma. Now
note that, if s is even,

C(s,m,n) = g e(st0/s
8/2

gr(2m+2n+s+2i+1)

(4.15) X—7;
.I=I1 (T'(2m + 20)T(2n + 20)T(4)}(1+8)(1+3+5)- - - (1+345---(s — 3))

and if s is odd

C(s,m,n) = 2 DDA
(s=1)/2
II r@m+2n+s+2+ DM(m+n+s+1)

(4.16) X 72 {‘1:(2"', + 21’)11(277‘ + 21/) T (2)} T [(Zm + s+ 1)/2] P[(27L +s°

(s—1)
11 +1)/21(148) - - - (1+3+5)(1+3+5 - (5 — 2))

Now, for s even, consider the term
C(s,m,n)V(2m + 2s — 3 + ¢s + ¢—1;2n + 1)

(4.17) X V(E2m+2s — 7+ gz + ¢s;2n + 1)
e VEm 414 ¢+ @20+ 1).

Substitute in (4.17) the value of C(s, m, n) from (4.15) and those of the
Type I beta functions and we get

g(m, $)[(2m + 2n + 28 + ¢ + g1 — 1) --- (2m + 2n + 25 + 1)]
[(2m + 2n + 25 + g2 + Qs — 3) - -+ (2m + 2n + 25 — 1)]
(4.18) e [@em+2n+ @+ q+3) - (2m+ 2n + s + 3)]
[(2n 4+ 3)(2n + 2][(2n + 5) -+ (2n + 2)]
o [@2n + 5 = 1) .-+ (2n + 2)],

where g(m, s) is a function of m and s.
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Similarly consider
C(s, m,n)U2m + 28 — 3+ ¢ + ¢1; 20 — HNU2m + 25 — 7
+ ot gs;2p—1)---U2m+ 1+ ¢+ a;2p —1).
After substitution of values of C(s, m, n) and U’s in (4.19) we get
g(m, )[(2n — g — g1+ 3) -+ (20 + D21 — g2 — g+ 7)
2+ 3)] 22 —g—g—1)(2n+s—1)]
A@2m +2n + s+ 3) -+ (2m + 2n 4 2s)][(2m + 2n + s + 5)
e (2m + 20 4 28)] - [(2m + 20 + 25 — 1)(2m + 2n + 2s)].

Now it may be noted that (4.20) can be obtained from (4.18) by (a) and (b)
of the lemma. In a similar manner, when s is even, other corresponding terms of
the linear compounds in the two cases can be shown to satisfy (a) and (b) of

the lemma.
If s is odd, we may consider the terms like

C(s,m,n)V(2m 4+ 25 — 3 + ¢ + qo1;2n + 1)
e VEm 3+ gt g2+ 1)V(m+ ).
Using (4.16) and the values of the V’s and performing (a) and (b) in (4.21)
we will get
C(s,myn)U(2m +2s — 34 ¢+ ¢o1;2p — 1)
e U@m 434+ ¢+ ;2 — UM+ a1 5p).
Similarly, if s is odd, we can show that other corresponding terms of the linear
compounds in the two cases satisfy (a) and (b).
Hence the lemma.
It may be noted that 4r{Vima} may similarly be derived from pr{ Ui mm} by
inverse operations of (b) and (a) of Lemma 2. Further, Lemma 2 readily ex-

tends to the case of product moments (say of the rth and hth esf’s) in view of
(ii) of Lemma 1.

(4.19)

(4.20)

(4.21)
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