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1. Introduction. This paper deals with a class of statistical decision problems
considered as games against Nature. We are concerned with problems in which
the number of states of Nature is finite, the set of decisions available to the
statistician is finite, and the statistician is strictly without information as to
which state of Nature will occur. Our purpose is to describe what we would con-
sider to be a satisfactory method for selecting a decision in such problems. A list
of properties, which we believe should characterize such a method is given.
Modifying a method due to J. W. Milnor, we exhibit a procedure which has the
required properties.

Related formulations of the problem have been treated by H. Chernoff [2] and
J. W. Milnor [3]. '

The following is a more explicit characterization of the class of decision prob-
lems we will deal with.

We are given a probability space (S, P) where 8 = {s;, sz, -+-, s,} is a set
of states of Nature and P is a probability measure defined on all the subsets of S.
A vector £ = (&, &, - -+, &) Is associated with S, where £ is a point in &, an
n — 1 dimensional proability simplex, such that

P({sj}) =420 forl<j=<n

P({sjU{s}) =&+ & foris=j

P<S>=§sj=1

We call £ an a priori probability distribution on the elements of S. It is assumed
that knowledge concerning £ can be completely specified by a statement of the
form £ ¢ E, where 5y C . If 5, = =, we say we are in complete ignorance of £.

We are also given a set D = {d;, dz, ---, dn} of decisions exactly one of
which must be selected prior to learning which state of Nature has occurred.
We may regard the d; as strategies in our game against Nature and will call the
d; pure strategies.

Also given is a real-valued function  defined on D X 8. u(d;, s;) is a real
number measuring the loss we incur when we choose d; and state s; occurs.

Then P = (S, D, u) is a decision problem, which can be regarded as a finite
game against Nature. The problem P can be identified with the loss matrix 4,
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where
u(dy , s1) uld , s2) - ulda ’ Sn)
u(dz, s1) u(de,s) -+ u(de,sn)

Lt(dm,sl) U(dm,82) - u(dm,sn)J

The row vector of the matrix A corresponding to pure strategy d; is called the
loss vector associated with d; .

In selecting a strategy, our sole motivation is to minimize our loss with respect
to the utility function 4. The purpose of this paper is to discuss methods for
selecting a strategy in cases where we are in complete ignorance of £.

2. Characterization of strategies. Let ® be an m — 1 dimensional probability
simplex over the elements of D. Instead of selecting a pure strategy directly we
may select an element ¢ ¢ ®, ¢ = (p1, P2, *** , Pn), and make our choice of
d £ D on the basis of the outcome of a random experiment constructed so that
d; will be selected with probability p; . Such a method for selecting a pure strategy
is called a mixed strategy. We will identify mixed strategies with their associated
vectors in ® and we will say that ¢ = (p1, P2, --*, Pn) assigns probabilities
Pr, ***, Pmtody, -+, dn respectively. Clearly, ® contains all pure strategies.

We can extend the utility function to the set ® of mixed strategies by defining
foralloe®d,and 1 < j < n,

u(o, sj) = ; pau(di, s;), where ¢ = (p1, **, Pn).

The vector (u(¢, s1), u(d, s2), -+, u(, s,)) is called the loss vector attained
by the strategy ¢. Strategies ¢; and ¢, are said to be u-equivalent if u(¢y, s;) =
u(gz, s;) foralll =5 = n.

A strategy ¢ is said to be dominated by strategy s if u(¢2, s;) < u(¢1, s;)
foralll < j < nandu(¢s,s;) < u(é:,s;) for at least one 1 < j < n. A strategy
is said to be admissible, if it is not dominated. A strategy ¢, is said to be essential,
if it is admissible, and if, for every pair ¢;, ¢; € ®, with ¢; not u-equivalent to
woand every A\, 0 < X\ < 1, we have u(ey, ;) # M(e1, si) + (1 — MNu(ez, 85)
for at least one index j, 1 < j < n.

3. Desirable properties for decision procedures. For any decision problem
P = (8, D, u), a decision procedure is a method of dividing the set of strategies
& into two disjoint subsets; the set K, of strategies which are, in some sense,
optimal, and the complement of K. It is assumed that all elements of K are
equivalent with respect to the optimality criterion used to construct K, so that
when employing a given decision procedure we may arbitrarily select a strategy
¢ from the resulting set K, provided K is non-null. Below we give a list of prop-
erties that should characterize a satisfactory decision procedure.
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In order to simplify notation and language, we will identify a decision problem
P with its associated loss matrix A and we will regard a decision procedure as a
method for specifying the set Q(A) of optimal loss vectors. The set K of optimal
strategies will be the set of all strategies which attain loss vectors in Q(A4).

Let C(A) denote the convex hull of the row vectors of the matrix A and let
E ; denote the submatrix of row vectors of A corresponding to essential strategies.
Note that an essential strategy is an admissible strategy, which attains a loss
vector, which is an extreme point of C(A4).

We believe that a satisfactory decision procedure is characterized by the 8
properties listed below.

Property 1. For every A, the set Q(A) is a non-null subset of C(4).

Property 2. If A’ can be obtained from A by permutations of the columns and
rows of A then Q(A’) can be obtained from @(A) by applying the permutation
on the columns of A to the coordinates of all vectors in @(A4 ).

Property 3. If eQ(A) and € is a non-negative vector and ¢ # 0 then
& — ez C(A). (Every strategy which attains a loss vector in @(A) is admissible.)

Property 4. Q(A) is a convex set.

Property 5. If

I'cl cy - Cn-]

A1 = M, + . .
I_CJ, Cy CnJ
where A > 0 and the ¢; are any constants then Q(4,) = {A\z + &: % ¢ Q(4o)}
where &€ = (c1, €2, ** 5 Cn)-

Property 6. If C(A{) = C(A3) and A; can be obtained from A4 by deleting j
columns from A, then Q(A;) can be obtained from Q(4:) by deleting the cor-
responding j coordinates from every vector in Q(A4.).

Property 7. If for Ay and Ay, C(E4,) = C(E.4,) then Q(A4,) = Q(4,).

Property 8. If {A;}7=1 converges to Ao, and Z; e Q(4,) for each j = 1, then
every limit point of {#;} 7= is contained in Q(A,).

Properties 1 through 4 appear basic to the problem and are not controversial.
They agree with properties given by both J. W. Milnor [3] and H. Chernoff [2].

Property 5 has two motivations. One is the relevance of regret theorem estab-
lished by H. Chernoff [2]. If A = 1and ¢; = —min; <i<m u(ds, 8;) foralll = j =n
where Ay = (u(d:, s;)), then

€L C ++ Cn
Ay = 4o+
Cl 02 ) cﬂ

is the regret matrix for A, . The other motivation is an invariance property of the
utility function. If ¢; = wforall 1 < j < n and 4o = (u(d:, s;)) wehave 4, =
(u(d:, 85) + u).
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Property 6 includes the column duplication properties required by J. W.
Milnor and H. Chernoff as a special case. The assignment, by Nature, of
an a priori distribution £ to the states of Nature is analogous to the selection
of a mixed strategy by the statistician. Nature has a corresponding pay off vector
(u(dl ’ 2)7 u(d2 ’ g)) ] ’U,(dm ’ E))T where u(dl) 5) = Z;;l Eju(di) s.f)- If; in
problems A; and A, the sets of all such vectors are identical, then, under com-
plete ignorance of £, the problem of selecting a strategy is essentially the same
in Al and Az .

Property 7 requires that the set of optimal loss vectors be the same for prob-
lems which have the same set of loss vectors corresponding to essential strategies.
Thus Property 7 insures that the set of optimal loss vectors depend only on
those loss vectors in C(A4 ), which uniquely minimize the expected loss for some
Ee .

Property 8 is given by J. W. Milnor [3]. An example (given below in the proof
of Theorem 1), showing the failure of the minimax regret criterion to satisfy
Property 8, is evidence of the need for it.

It will be shown that two general classes of decision procedures contain no
procedures which possess all of Properties 1 through 8.

Consider the class D of procedures, which select a non null subset 5 C E,
where E; depends only on n, the number of states of Nature, and specify as
optimal all loss vectors & & C(A) for which there is a & ¢ &, such &-z" < &4
for all j e C(A).

The procedures in D which satisfy Property 2 are those which, for all n = 1
select =, so that if £ e & then £ ¢ &y where £ consists of any permutation of the
coordinates of £.

The procedures in D which satisfy Properties 3 and 4 are those which select
= as a one point set. If & , & ¢ 2, with & s & then we can find an 4 for which
C(A) has extreme points #;, &, and &; such that, for ¢ = 1, 2, £,-37 < E-4"
for all j e C(A) but the strategy corresponding to #; dominates the strategy
corresponding to 3% + 1%, . Property 4 requires that 3%, + 1% ¢ Q(A) while
Property 3 requires that 3% + 3% 2Q(4).

Then the only member of D consistent with Properties 2, 3 and 4 is the proce-
dure which selects 5, = {£ = (1/n, - -+, 1/n)} for all n = 1 (the procedure based
on the Principle of Insufficient Reason), but this procedure is not consistent with

Property 6.
Consider the class of decision procedures {A,: 1 = p = «} defined below.
Let o = (v1,0e, -+, ) Where v; = mini<;<m u(d:, ;) (the v; are the column

minimums for the loss matrix A). For 1 < p < «, define

el = (1)

7=1
and

1Zllo = supi<iza [%i.
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Denote by B(A) the subset of C'(4) consisting of loss vectors corresponding to
admissible strategies. Let A, be the decision procedure which specifies Q(4)
as all e B(A) for which ||# — Z||, < ||? — |, for all & C(4). Note that A,
coincides with the decision procedure based on the Principle of Insufficient
Reason and A, is the restriction of the minimax regret procedure to admissible
strategies. Then, we have the following theorem.

TaEOREM 1. For 1 < p < =, A, satisfies all properties except Property 6,
and A, satisfies all properties except Property 8.

Proor. Properties 2, 3, 5, and 7 are trivially satisfied. Property 1 is satisfied

since || — Z||, is continuous on E, and since B(A) is compact, we have
mingzwy || — &/, is attained in B(4).
To see that Q(A) is convex, note that the set S, = {§: |§ — 9|lp = o} isa

closed, convex set in E, and Q(A) is given by S, e N C(A), where o™ is the

least & = 0 such that S, N C(A) is non-null. The conclusion follows on noting

that the intersection of convex sets is convex. Hence Property 4 is satisfied.
To see that Property 6 is not satisfied for 1 < p < «, consider the games given

by
30 300
A‘=<0 2)’ A2=<0 2 2)

Then, for any p,1 < p < «, it can easily be seen that Q(4) = {(BA\)2(1 — M)}
where A; minimizes 3°A + 2°(1 — A\)? on [0, 1] and Q(4:) = {(3\2), 2(1 — N),
2(1 — \)}, where \; minimizes 37\ + 2°7(1 — \)” on [0, 1]. It then
follows that A; ¥ \; and @(A;) can not be obtained from @(A4:) upon deleting
the third coordinate. For p = 1, row 1 is the optimal loss vector in A, and row 1
is not the optimal loss vector in A;. For p = «, Property 6 is easily seen to be
satisfied by using well-known properties of the minimax regret procedure (D.
Blackwell and M. A. Girshick [1]).

We now examine Property 8. For 1 £ p < « and lim;,. 4; = Ao, let 7;
and % be the vectors of column minimums for 4; and A, respectively. Then
lim;,, 5 = % . Now let {Z,,} be a convergent subsequence with &;, ¢ @(4;,)
for all jm, and let & = limj,.« &, . Then, & must be in C(4,). Assume
%o # Q(Ay). Then, there is a § ¢ B(4o) € C(4,) and a6 > 0, with [|[ig — §l, <
|l5o — &o||, — 6. In addition, therelsasequence {7}, y, e C(4; )Wlth g — Fillo <9
and ||5; — Bol, < 6 forallj > j *(8). Then for j, > 7*(8), we have

”:zjm - 6fm||? = ”gjm - 51’1»”1: <25+ ”g - ﬂ0”17 < ”60 - ﬁO”ﬂ -

which contradicts lim;,,« &5,, = %o .
For p = =, the following example will show that Property 8 does not hold.

Let
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and
2 0 2
2 2 0
A°"111
011

Then Q(A;) = (1,1, 1) and Q(4,) = (0, 1, 1).

Now let v = mini<;<, v and define o = (vy, vy, -+, vo). Further let Ap
be the decision procedure which specifies as optimal all & e B(A) for which
|]z’7 — &, < || — g, forallje C(A). Thenforallp,1 < p < = the procedure
Al is not consistent with either Property 5 or Property 6. In addition As is the
restriction of the minimax procedure to admissible strategies and violates Prop-
erties 5 and 8. The proof is similar to that of Theorem 1 and will be omitted.

J. W. Milnor [3] initially gives a list of axioms for decision procedures, which
he proves are inconsistent. Milnor then gives an alernate list of less restrictive
axioms, which can be shown to be consistent. The requirements of Milnor’s
alternate list are included in the list of properties given here.

H. Chernoff [2] gives a list of postulates for decision procedures, which he
shows to be inconsistent. He does not list a requirement similar to Property 8,
but his Postulate 4 excludes the minimax regret procedure. H. Chernoff’s
Postulate 4 is stated below as Property 9.

Property 9. If As can be obtained from A4; by deleting rows from A4, then

Q(41) NC(4:) € Q(4s).

Property 9 says that a non-optimal strategy in 4, can not be optimal in 4, .
It is our feeling that if the rows deleted change the set of the loss vectors cor-
responding to essential strategies, Property 9 should not be required. In par-
ticular, the inclusion of Property 9 would make the set of properties given here
inconsistent.

J. W. Milnor [3] proves his alternate list of axioms are consistent by giving
a family of decision procedures, each member of which satisfies his axioms.
Modifying Milnor’s procedures, we can produce a similar family, each member
of which possesses Properties 1 through 8.

Consider the following procedure. Let {¢;}7— be a monotone non-increasing
positive sequence converging to zero. Let d(Z, §) = maxXi<i<a [€; — yi|. Then
for the m X n loss matrix A denote the convex hull of A4, C(A) by @: . Further,
we denote by ; the vector (»{®, vél), -+, &), whose coordinates are defined by
v = mingq, ;. Let 21 = minge, d(#;, ). Proceeding inductively, for all
hz1,let Quu={TeQn:d(th,E) < 2 + ez}, where s, = (0P, 0, -+, o)
and v{" = ming.q, z:, and z, = minsq, d(% , ).

The sets @ are closed convex subsets of C'(4) for every k and @, D Qi1
forallh = 1. Let Q(A) = inf; Qs .

LemMa 1. Q(A) satisfies Properties 1 and 4.

Proor. By Cantor’s theorem Q(A) is a closed non-null subset of C(4).
Futher, Q(A) is convex, since @ is clearly convex for every h.
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LemMa 2. The set Q(A) consists of a single point 8.

Proor. Let # = (v1, 03, -+ -, 0s) Where v; = minzqcs ;. Then, it is easily
seen that limp,, v = v < v;. Let K, = {fe B, 12 = v}, Then K, N Q(A)
= N2, (K; N @) is non-empty and there is an Z ¢ Q(4) with z; = »{ and
v; < v, Hence, limp, o = 0. Define z = mingqm d(¥, &). Then, for any
¢ > 0 and all sufficiently large h, and every Z ¢ Q(4), z < d(9, &) = d(¥, %) +

d(9, ) < e + 2n + 21 . But,
2n = Milzq, (B, &) < MiNzequy d(Br, &) < minzeeew [d(B, 9) + d(7, 2)]
< € 4+ mingeu) d(#, &) = 2z + ¢

But ¢, — 0 and hence d(7, ) = z for all Z ¢ Q(4).

Thus, Q(A) lies on the surface of a sphere (hypercube) of radius z with center
at 9. However, since Q(A) is convex, @(A4) must lie entirely on one face of the
hypercube. Hence, we have that for all ZeQ(4), z; = v; + z for some
i,1 < ¢ < n; which implies that z = 0, since v; = minz.q(s) &: = v; + 2. Therefore,
Q(A) is a single point, &, since for all & £ Q(4), d(7, Z) = 0.

LEMMA 3. § is attainable only by admissible sirategies. Thus Property 3 ts
satisfied.

Proor. Assume the contrary. Then theie exists an & e C(A) with zi S s
foralll < ¢ = n,and x; < sjfor at least onej, 1 <5 < n,and & 2 @Q(A). Since
{Qx} is a non-increasing sequence of sets, there is an A = 1 such that Z¢ @,
and & 2 Quy1 . Also, we clearly have o < giforall 1 <4 < n. Since & 2 Quy1,
d(n, &) > 2 + 2ie . This implies d(%n, s) > 2n + 21 and § £ Qnya contradict-
ing §¢Q(A). Thus we have shown that no strategy attaining the loss vector
% can be dominated.

Some auxiliary results will be used to show that Property 8 is satisfied. Since
these results are general properties of convex polyhedra, they are sketched in
the appendix as Theorems A and B. Hence, we now establish:

Lemva 4. If {Ay)ie1 converges to A, then, {3}i=1 comverges to 3, and hence
Property 8 is satisfied.

Proor. For any set R, let d(%, R) = infy.r d(Z, 7). Let ¥ = (vi, 72, +- Yu)
and define () = {#:2; < vi,i = 1,2, -+, n}. Since {A;}x-1 converges to 4,
for any 6 > 0, there is a k(6) sufficiently large such that max;; la$f — ai] <8
for all k = k(5). Let Q¥ = C(4x) and @ = C(4). Further, let

Q) NG (%)
o = (vir, iz, ", Vin ),
k . o . N
where »{¥ = ming.¢® &;,and let 5 = (v, v12, - ** , ¥1a), Where v1; = MiNzeq, Ti .

11

Let 2 = d(o®, Q) and 2, = d(#1, Q). Let @ be the vector (1, 1, -, 1).
Then for p = 1, define Q% = {QP N T (55 + (25 + 2" )i1)}, where 85" =

k k k . k. k 13
v® v ® o 0$)) and vh] = mMing (M i , P = d(®,QY); and let @, =
{Qo N T (¥, + (25 + €p21) @}, Where 0, = (0p1, V2, ***  Upn) A0 Vpy = MiNzeq, T

2p = d(¥,, Q,). From Theorem B of the appendix, we have; for any closed,
bounded convex set €, with a finite number of extreme points, and any
7= (m,mn, ~*+,m), 7 = 0, and any ¥ with T(%) N C # 6, then for any
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weT(¥ + 7) N C, there is a number ¢(C) (depending only on C) and a
te T(7) N C with d(f, ®) < ¢(C)[max;n. Let ¢ = ¢(C(A4)) and let ¢’ =
2 + 2¢(2 + «). In addition, let 6, = 1 and let 6, be a sequence of real numbers
satisfying

. 21 €p
0 < 6h < min [W) ,ah—l] y

and let &, = k(8,). Next, we define
Qorin = {Q N T, + (2 + 61 — 2(2 + &)alg)™ D))

Assume z; > 0. Then we first show that for k = k., h = p,
(1) max {maXsoew d(&, Qp), MaXs.aq, d(T, QM < (¢ )7 "o
Since, for k = k, , max,; [a'f — ai| < 8, we have, trivially, »
(2) max {maxzq(® d(E, Q1), MaXzq, d(Z, QM) < &
Further, since ¥ — vy,| < 8,7 = 1,2, --- , n, we have
(3) d(o?, 01) < 8.

In addition, since there is an Z ¢ Q¥ with d(#(, &) = 2{* and an &’ ¢ Q, with
d(z, &) < 6., we have:

(o, &) < d(d, 3P) + d#P, ) + d(z, &) < 2P + 25,

and therefore:

(4) A, Q) = 21 < 2 + 26, .

By symmetry,

(5) #4Y <z + 26,

Hence by (4) and (5), we have

(6) o2 — 2P| < 264

In particular, setting p = 1, we have verified (1). Then, assume (1) holds for
p=1,2 ---,m — 1. Then, trivially, we have for h =2 m — 1, and k = k.,
(7) d(5021, tna) < (¢)" 0,

and similarly to (6), we can conclude,

(8) Jem1 — ana] < 2(4)" .

Let § be any element of Q. Then, from (8) and (6),
d(ﬂr(nk—)u ?]) = Zr(nk—)l + €m-12{k) < Zma + Z(Q,)m—25h + Gm-l(zl + 25h)

and

(9) A2, §) < 2ma + ziEma + 2(¢)" 7 00(1 + €m-1)
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Since QY < Q% , there is an & & Qn_ with d(7, &) < (¢')"6x and from
(7) and (9),

A(Bn1, &) < 2mo + 216mo1 + 2(¢))"700(2 + em1)

and hence & & T(n_y + [216m1 + 2(¢)""04(2 + en-1)]%) N Qs .
Then, by Theorem B, there is a §’ ¢ Q,, with

a(x, §) < al2(¢)" (2 + ema)]

and
A, 7) < (@)l + ¢(2 + en)].
Hence
maxgowr d(F, @n) < (¢)" 5[l + ¢(2 + en1)]
and
(10) maxzeq(d d(f, Qn) < (¢')" o

forallh =2 m — 1,k = k.
Since for h = m — 1,

Omp = Zm—1 + em—121 — 2(2 + em—1)3h(q')m—2 > Zm—1 + €m—121

22 + envmalg)"”
2(¢)2(2 + «)

Inasmuch as (2 + en1)/(2 4+ &) < 1and ¢’ > 1, we have

Ump > Zme1 + €m—121 — %(Zlén) > Zm—1

and therefore Q:,,,,, is non-null for h = m — 1.
Now let # be any element of Q,, . Applying Theorem B, there is an #’ ¢ Q,',,,,. ,
h = m — 1 with

(11) Az, &) < 2¢(2 + en)n(q)" "

In addition, since # & Qnr C Qu C Qu_1, from (1) there is a § £ Q¥ with
(12) A&, §) < ()"

and hence, by (11) and (12), we note that

(13) d(%§) < (&)l + 2¢(2 + en1)]-

~ k) .
However, then § £ Q% since

d(ﬁf(ﬂk'zl ’ g) é d(ﬁfﬂk—)l ] 177"—1) + d(ﬁm——l y f}'l) + d(zy’g)
< Zm-1 + €m121 — 2(q')"‘_26h[1 + em1]
< 27(,;]21 + Gm—~lz{k) — 26hem_1((q')'"'2 - 1)

k k)
< z'r(n—ll -+ €m~1Z§ .
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Therefore, from (13),
(14) MaXzeq,, (T, ,(nk)) < (q,)m—lﬁh

forh = m — 1,and k = ki, . Combining (10) and (14), we have established (1).

Then, since inf, @, = {3}, for any § > 0, there is an integer p(8) such that
the set {Z: || — 3| < 8/2} = 8(%,8/2) contains @, for all p = p(8).

In addition, there is a p(8:) with (¢')" '8, < 8/2 for p = p(s:) and h = p,
so that for p = max[p(8), p(d1)], S € S(5, 8) for £k = k(h) and therefore
d(%, 3) < 8, establishing Lemma 4, whenever z; > 0.

If 21 = 0, then 3 = B eQ, for all p = 1, and {3} = @, for p > 1. Then,
for any 8 > 0, there is a k(8) such that for k = k(8), maxyla'y — as| < 8,
d(%, 7¥) < 8, and 2{¥ < 25. In particular, z{ + e2{® < 26(1 + &). Thus for
GeQ®, d(3, ) < d(%, 0”) + 26(1 + &) = & + 26(1 + «). Since & ¢ @5,
the conclusion follows.

LemmA 5. Properties 2, 5, and 7 are satisfied.

Proor. The proof is trivial for Properties 2 and 5. Property 7 is easily verified
by noting that %, and 2, depend only on loss vectors corresponding to admissible
strategies.

LemMA 6. Property 6 s satisfied.

Proor. Let A; and A, be m X n — 1 and m X n matrices respectively with
C’(AlT) = C(AzT) and let the columns of 4, be 3, 32, - - -, 3,1 and the columns

of Ay be 5, 5, -+, 8, . Then there exist constants A, = 0, >_r— A = 1 such
that for z € Q1(As), n = i M. Then:
n—1
Tn — Vn = kZ_l N — MiDgegy(45)Yn
n—1 n—1

= kzl Nl — minié’el(Az)kE Nl
p— =1

n—1 n—1
s kZ; Ne(@r — mingeq, wYr) = ké:)‘k(xk — )

Hence 2, — v, < x; — v for at least one k& < n, and hence d(7, ) = d(¥, &)’
the primes indicating the omission of the nth column. Thus the decision procedure
which depends only on d, is not affected.

Hence, we have established the following theorem.

THEOREM 2. For any mon-increasing positive sequence {ep}p—1, with e, — 0,
there exists a decision procedure which satisfies Properties 1 through 8.

APPENDIX—SOME PROPERTIES OF CONVEX POLYHEDRA

Let C be a closed, bounded convex set in £, with a finite number of extreme
points, let ||Z]| be the Euclidean norm of %, and let p(Z, ) be the Euclidean
distance between & and 4.

DEFINITION. A vector d is said to leave C at the point 7 ¢ C; if for all n > 0,
7 + nd £ C. Then, letting p(&, C') = mingcp(Z, §) we have the following theorem.
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THEOREM A. If d leaves C at the point v, where ||d| = 1, and

p(0 + nd, C)
7

f("’)=.f(777ﬁ7g)= 77>0

then
f(0) = lim,.o.f(n) > O.

Proor. Let p ¢ C be the vector uniquely specified by
(A1) p(8 4+ 9d, C) = p(v + nd, 5 + P)
Then, for0 < 7" < g

0= p(6+14d,C) = (n'/n)p(® + nd, C)

and, hence it follows that f(7) satisfies
DHO0=fn) =1
(ii) limy.of(7) = 1
(iii) f(n) is continuous in 7
(iv) f(n) is monotone non-decreasing.
Then, write

v+ p(n) = §(n) = MZW Ni(n)a®?

where the @? are extreme points of C and 0 < A\; £ 1, D wxhi = 1. If for
sufficiently small 9, K(») is a one-element set, it follows that # is an extreme
point and f(0) = f() = 1. If K() contains more than one element, it can be
shown that for 0 < 5 < 5%, f(4) is constant, and positive, whenever d leaves C
at 7 ¢ C. Essentially we have shown that

(A.2) 0 < f(0) = miny[ld — 2y, 2 v = 0

and the set K is determined by #. Since there are a finite number of extreme
points, there are only a finite number of possible sets K, and hence the minima
(A.2) will have a positive lower bound independent of 2.

For any vector 2 = (21, - -, 2,), define T; = {%: z; < 2;}. We now establish
the following theorem.

THEOREM B. For any é = (e, +-*, &) withe; = 0,2 = 1,2, ---, n and any
z such that T; N C # 0, and any ® & Tz4z N C, there isa v e Ts (1 C and a constant
q depending only on C, such that || — 9| < q||€.

Proor. Assume the contrary, then there exist sequences 2™, €™, ®™, 3™,
such that

(A.3) 1™ — o™ = m|e™] > o, m=23,:-

where 5™ is the unique best approximant to %™ from the convex set Tzm N C.

Further the coordinates of ®™ and 3™ satisfy
(A.4) wi™ < 2 4 ™

(A.5) o < o
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We classify the values of 4, ¢ = 1, 2, ---, n, according to the following in-
equalities.

(A.6) i = 2" < w{™
(A7) o™ = wi™
(A.8) o < wi™ P < ™
(A.9) wi™ < pf™

and let I denote the set of indices ¢ for which (A.6) or (A.7) hold and J the set
for which (A.8) or (A.9) hold and note that neither I norJ can be empty.

Since there are only a finite number of partitions of the integers {1, 2, - - -, n}
into the sets satisfying (A.6)—(A.9), we can choose a subsequence for which the
partition is the same for all m. Hence, we shall suppose that the sequences
satisfy this condition. Then, let
(m) (a)(m) _ ﬁ(m))

(A.10) ) 7 ]
Clearly |d™| = 1, and we can choose a convergent subsequence such that
lime..d™ = d, where ||d|| = 1.

Then, if ¢ ¢ I, it follows that d; = 0 and hence d; > 0 for some 7 ¢.J. Hence,
we have that d; = 0 if (A.8) holds and d; < 0 if (A.9) holds, with strict in-
equality for at least one 7. Since ™ and @™ & C, there is an " > 0 with
3™ * 9’d" in C. Thus, it can be shown that there exists an ” > 0 with 5™
+ 7"d closer to @™ than 5™ and hence, 3™ + 5”d is not in C. Hence, d
leaves C at the point 5™, but is approximated at these points by the vectors
d™ which do not leave C at 3™. Then, from Theorem A, for sufficiently small
7> 0,

Ild — a|

f(n, 5™, d) =
n

—0 as a— o,
which contradicts the conclusion of Theorem A, and establishes the existence of
the constant gq.
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