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1. Introduction. Let (@, S, P) be a probability measure space. Let X;(w),
Xs(w), - - - be a sequence of B-measurable random variables in ¥ which are inde-
dependently and identically distributed with common distribution u(-). Here X
is a separable complete metric space and B is the class of all Borel subsets. Let
u(n, w, -) be the empirical probability measure of X;(w), X2(w), - -+, Xp(w),
namely, the probability measure that assigns masses 1/n at each of the points
Xl(w); Xﬂ(""’); Ty Xﬂ(w)'

Let f(x) be any measurable real-valued function on ¥ with [ exp (sf(z))u(dz)
< < for all s. It has been shown by Cramér [3], Chernoff [2], Bahadur and
Ranga Rao [1], ete. that

(1) (1/n)log Ple: |[ f(@)u(n, w, de) — [ f(@)u(dr)| 2 ¢ — log p(f, €)
where, if E(g) = f g(x)u(dz) for any function g,
p(f, €) = max {inf.zo exp [—se — sE(/)IE(e”),

2
2) inf, <o exp [se — sE(f)IE(e)}.

Now let X be a separable Banach space and let

(i) [ exp (s|z])u(dz) < o for all s and

(ii) f 2*(z)u(dz) = 0 for each continuous linear functional z* on ¥. Sethura-
man [6] (Theorem 7) has shown that

(3) 1/nlog P{w: [(1/n)(Xi(w) 4+ - + X (0)|| = ¢ — log p(%* )

where X,* = {2¥: [|2¥|| = 1} and for any collection, &, of functions p(5, €) =
supyes p(f, €.

Now, let ¥ be the space D[0, 1] of all real valued functions z(¢) on [0, 1] with
the properties

(i) 2(t —0)and z(t + 0) exist for 0 < ¢t < 1 and z(¢) = z(¢t + 0)

(ii) z(¢) is continuous at { = O and ¢ = 1.
We endow this space with the Ji-topology of Skorohod [7] and it becomes a
separable complete metric space. (See Section 2 for more details.) Let [z =
Supo<¢<1 |#(¢)]. The main result of this note, proved in Section 3, can now be
stated.
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TuroreM 1. Let [ exp (s||z|)u(dz) < = forall s. Then
(1/n) log P{w: supo<i<1 || 2(t)u(n, o, dz) — [ z(t)u(dz)| = €
— log n(G, €)
where G = {g:g =g¢.,0 =t = lorg=g,,0 <t <1} where
g(x) = z(1), 0=t=s1
g (x) =z(t—0), 0<t<1L

We remark that (1), (3), and (4) are strengthenings of the corresponding
results on the strong law of large numbers (SLLN) under the added assumption
of the existence of the moment generating function. The SLLN for real-valued
and Banach-valued random variables are well known and need no references.
The SLLN for D0, 1]-valued random variables was given by Ranga Rao [5].

2. Preliminaries. The Ji-topology of Skorohod on ¥ = DJ[0, 1] is defined as

follows:
A sequence x, converges to x if there is a sequence {\.}, of 1-1, continuous

transformations from [0, 1] to [0, 1] such that
supo<i <t [|[Ta(Aa(t)) — z(8)] + [Ma(t) — 8] — 0.

Kolmogorov [4] and Skorohod [7] have shown the following:

(i) With this topology X becomes a separable complete metric space.

(ii) A set K in X is compact if and only if for each 6§ > O thereisa § = §(K, 4)
such that

[Supocecs [(¢) — @(0)] + supis<ica |2(t) — 2(1)]

+ SUPacii<tct<ats {Min ([2(h) — x(t)], [x(t2) — 2(t3)))}] < 0
and |z(1)] < M, te[0, 1] for all v in K.

This implies that if 0 = ¢, < {; < --- < # = 1is a partition, 3, of [0, 1] with
max; (tiy1 — ti) < 8(K, 0) then either |z(t) — z(t:)| < 6or |z(¢) — z(tiy1)] < 6
whenever ¢; < t < t;41 and for all z in K. In any case for each ¢ in [0, 1] there is
an integer ¢ such that

(6) [(t) — z(t:)] £ |o(t:) — x(tiya)| + 6
for all z in K.

The plan of the proof of Theorem 1 is as follows. From (6) we note that for
any compact set K C % and 6 > 0, there is a 6(K, 6) such that if 3 =
(to, t1, -+, ty) is a partition of [0, 1] such that max; ({1 — &) < 8(K, 6) then
sup: || 2()u(n, o, dz) — [ 2(t)u(de)|

< max; |[ @(t)w(n, v, dz) — [ a(t:)p(dz)|
+ max; [ [2(t:) — 2(ti1)|(u(n, @, dz) + u(dz))
+ 4 x llzll(u(n, o, de) + w(dz)) + 26.
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The purpose of Lemmas 3 and 4 is to show that 3 can be chosen more carefully so
that the contribution of the second term on the right hand side is small. Lemma
2 shows that K can be chosen so that the contribution of the third term can be
neglected. Lemma 6 is to show that the arbitrary but positive 6 can be made to
tend to 0 without affecting the results. A few elementary considerations outlined
in Lemma 5 help to evaluate the contribution of the first term precisely. This
would complete the proof.

Lemma 1. Let vi and v; be two probability measures on (¥, B) with [ |||»,(dz)
and [ |[z||vs(dz) finite. For any compact set K C ¥ and 8 > 0 there is a number
0(K,0) suchthat if 3 = (to,t1, - -+ , ) is a partition of [0, 1] with max, (tiyy — &;)
< §(K, 0), then

supo<i<t | [ z()n(de) — [ x(t)va(dz)]
< max; | [ z(t)n(dz) — [ 2(t:)ve(dz))|
+ max; [ |z(t:) — @(tp)|(i(dz) + pa(da))
+ 4 2] (ni(dz) + va(dz)) + 26

where K’ is the complement of K.
Proor. The lemma follows immediately from (6).

Lemma 2. Let
fm(z) = |z ifze K
=0 ifveKny
where {Kn}, m = 1,2, -+, is an increasing sequence of compact sets whose union

18 a support for u. Then
(a) (1/n) log P{w: [ fu(@)u(n, o, dz) = v} —log p*(fu, 7)

where

(7) p*(fm, ¥) = infizo exp (—sy)E(e”™),
(b) limyae p*(fm ,v) = 0 for each v

and
(¢) limyseo B(fn) = O.

Proor. The first part of this lemma is just another version of (1). (b) follows
from the fact that E(e”’™) — 1 for each s. (¢) is trivial.
Lemma 3. Given any n and s > 0 there exists a partition 3,(s), of [0, 1] such that

if 3= (to, r, -+, t) s any subpartition of 3,(s), then
(a) max; [[ exp [sle(t;) — @(ta)[le(de) — 1] < g
and

(b) max; [ |z(t:) — x(lg)|u(dz) < 7.
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Proor. Part (b) of this lemma has been established by Ranga Rao [5] (Lemma
2). Part (a) is proved in an analogous fashion.
The following, which is an immediate consequence of Lemma, 3, is stated with-

out proof.
Lemma 4. Let fuo(2) = |2(u) — x(v)|. Given y and v > 0 there exists a parti-
tion 3,y of [0, 1] such that if 3 = (4, tr, -~ , &) is a subpartition of 3, , then
(a) max; p* (fiy 0,1, 7) S 1
and
(b) max; B (fi,1;,,) =

where p*(f, v) is as defined in (7) in Lemma 2.
The following lemma, is trivial.
LemMma 5. Let {X,:},7 = 1,2, -+, k be k sequences of random variables with

lim, (1/n) log P{| X, = ¢ = log pi(e), 1= 1,2, -, k.

Then, for any 02, 05, -+, 6, > O with 2 _50; < e
(a) lim sup (1/n) log P{|Xn1 + Xno + -+ 4+ Xpns| = €
< log [max {pi(e — 2.5 6:), p2(62), -+, pu(64)}]

and
(b) lim sup (1/n) log P{max;|X,. = ¢ = log [max; p.(€)].

An important lemma that we shall need is the following:

LemMa 6. Let § be a class of measurable functions on ¥ with the properties

(a) every sequence in § has a subsequence that converges to a function f in &
almost everywhere [u],

(b) there is a function g such that [f(z)| £ g(x) for all f in § and E(exp (sg))
< o for all s. Then p(F, €) s continuous from the left at each ¢ > 0.

Proor. This assertion is essentially Lemma 3 of Sethuraman [6].

3. Proof of Theorem 1. Let {6,.} and {5.} be two sequences of positive numbers
tending to zero; 71, v2 be two positive numbers with v = v + 72 < eand {K,,}
be an increasing sequence of compact subsets of ¥ whose union is the support of
u. Let 3 = (tmo, tma, -, tm,) be a subpartition of the partition 3,,,,, of
[0, 1] with max; (¢meiryy — tme) < 6(Km, 0n) where 3, ,, and 6(K,. , 6,) are as
defined in Lemmas 4 and 1, respectively. We then have from Lemma 1

Zn(w) = supozizt | [ 2(O)u(n, o, dv) — [ 2(t)u(dz)|
=< max; [f x<tmi)l~‘(n7 W, dm) - fx(tmz)l‘(dx)l
(8) + max; [ [&(lnin) — 2(tm,o)|(1(n, 0, dz) + p(dz))
+ 4 [z, 2] ((n, o, de) + u(dz)) + 26
= Zn,l,m(w) + Zn,2,m(w) + Zn,3,m(w) + 26m, (Say)-
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Now,

A

lim sup, (1/n) log P{w: Zn 3m(w) = vs} log p3.m(7s3)
where lim,, p3,»(v3) = 0 according to Lemma 2,

lim sup, (1/n) log P{w: Zn 2m(w) = 72}

lIA

log p2.m(72)
where limy,, ps,.(v2) = 0 according to Lemmas 4 and 5, and
lim sup, (1/n) log P{w: Znim(w) = 6} = log p1,m(8)
where
p1m(0) = max; p(ge,; ,0) = p(G, 0)

according to (1) and Lemma 5. Using Lemma 5 once again

lim sup, (1/n) log P{w: Z,(w) 2 ¢} =< log p(G, ¢ — 7).
Using Lemma 6, we have
(9) lim sup, (1/n) log Plw: Zn(w) 2 ¢ = log p(G, €).
And, from the obvious inequality

Zo(w) 2 | g(@)uln, o, dz) — [ g(z)u(dz)]

for each g in G, we also have
(10) lim inf, (1/n) log P{w: Z,(w) = ¢ = log p(G, ¢).
Theorem 1 now follows from (9) and (10).

4. Some remarks.

(1) Let F(t) be any distribution function on [0, 1]. Let Y1(w), Y2(w), - - - be a
sequence of independent random variables with the common distribution func-

tion F(t). Define
X:(t,w) =0 t < Yiw)
=1 t 2 Yi(w).

It is easy to show that X(-, w) is a random variable on (¥, B). We note that
suposi<i | 2(Du(n, o, dx) — [x(u(de)] = supo<ec [Fa(t) — F(1)]
where F,(t) is the empirical distribution function of Yi(w), ---, Y,(w). We

therefore deduce from Theorem 1, that

(1/n) log P{|Fu(t) — F(1)| 2 ¢ — log p(G, €),

a result previously shown in a more general form in Sethuraman ([6], Theorem 3 ).
(ii) Let ¥ = CJ0, 1] the space of continuous functions on [0, 1]. Both (3) and
(4) can be applied to ¥ since it is a Banach space and also a subset of D[0, 1].

The limits of



LARGE DEVIATIONS OF THE MEAN 285

(1/n) log P{w: supo<i<i || 2(Ou(n, o, dz) — [x(t)p(dz)| = ¢

so obtained would be log p(%:*, €) and p(G, €) from (3) and (4), respectively,
which of course must be equal. Of these, the second would be easier to compute
since it involves taking a supremum over a smaller set than for the first.
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