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1. Introduction and statement of results. Local limit theorems for asymp-
totically stable lattice distribution functions have been obtained by Gnedenko
[2], [3] for the one-dimensional case and by Rvadeva [6] for the multi-dimensional
case. We shall here obtain analogous results for nonlattice distribution functions.

Let F be a stable distribution function in d-dimensional space R* which has a
density p. Let F; be a distribution function in the domain of attraction of F,
let F, denote the n-fold convolution of F; with itself, and let B, and A, be con-
stants in R and R respectively such that .

(1) limpsw Fo(Bo(z + 4,)) = F(x), re R

Let f and f; denote the characteristic functions of F and F; respectively. We
say that F, is nonlattice if

(2) f1(0)] < 1, e R — (0).
We say that F, is strongly nonlattice if
(3) ¢~ = lim sup g |f1(8)] < 1.

It is clear that F; is nonlattice if it is strongly nonlattice.

Note that lattice distribution functions and nonlattice (as defined here)
distribution functions do not exhaust all possibilities unless d = 1, since a dis-
tribution function can be lattice in some directions, but not in others. The last
possibility will not be considered in this paper.

Forz = (2, -+, 2*) e R*and h > 0, let P(z, h) and P.(z, h) denote the
measures assigned by F and F, respectively to the set

ly=@, -,y =y < +h for 15k =d.
If d = 1, for example, then P(z, h) = F(z + h) — F(z); while if d = 2, then
P(z,h) = F(z' + h, 2" + k) — F(' + h, a?) — F(a', 2* + ) + F(a', 2%).
It follows from (1) that
(4) limpsw Pa(Ba(z + Aa), Buh) = Pz, h), zeR’ and h > 0.

The purpose of this paper is to prove the following
TraeorEM. If F1 is nonlattice, then?

(5) Pu(Bu(z + An), Bah) = Pz, h) + 0.(1)(B* + B, 7).
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If Iy is strongly nonlattice, then for any fixed ¢ < ¢,
(6) Pun(Bu(z + An), Bah) = P(z, h) + 0,(1)(B* + ¢™°").

That this is really a “local”” theorem becomes apparent on letting b — 0. As
we shall observe later, p is continuous and vanishes at « and is therefore uni-
formly continuous. It now follows easily from (1) that the statements of the
theorem are equivalent to those of

CororrArY 1. If Fy is nonlattice, then

(7) Pu(Bu(z + An), Bah) = h'p(z) + 0na(1)(B* + B.7).
If F, is strongly nonlattice, then for any fixed ¢ < ¢y
(8) Pu(Ba(z + An), Bah) = K'p(z) + 0an(1) (B + ¢™").

By setting h = B, ' we obtain
CoROLLARY 2. If F is nonlattice, then

©) Pa(Ba(x + 44), 1) = B, p(z) + o(B.™).

Similarly we have
CoROLLARY 3. If F is nonlattice and A, = 0, then for fixed x ¢ R

(10) P.(z,1) = B, p(0) + o(B.™%).

Results such as Corollary 3 are useful in obtaining limit theorems for occupation
times (see e.g. Kallianpur and Robbins [4]).

A further specialization is

CoROLLARY 4. If Iy is nonlattice and has mean 0 and positive-definite covariance
matriz Z, then for fized x ¢ R®

(11) Po(z, 1) = [rn)"IZ[T + o(n™").

For the case d = 1, Corollary 4 can be stated as follows: if F; is nonlattice and
has mean 0 and finite variance o° > 0, then for fived x ¢ R

(12) Fu(x + 1) — Fo(z) = o *(2mn) 7 + o(n™d).

This one-dimensional result has been obtained by Shepp [7] and, to the best of
my knowledge, is essentially the only special case of the above theorem to have
appeared previously in the literature.

In the proof of the theorem we use some of the methods of Gnedenko and
Rvaceva from the papers quoted above. The idea of using the convolution
method to eliminate the tail of the characteristic function f; was suggested by
the work of Esseen ([1], pp. 30-36).

2. Proof. For z = (@', -, 2%) ¢ R® and 6 = O, , 0:) & R® set

o] = (6° + -+ + 6%, 6] = max;<x<a |6, and z<0 = z'6; + --- + 26,
Define K (z), z ¢ R*, and k(9), 8¢ R, by

sin T sin z\*
1 2 2
K(x)—(2 Y\ 7zt 2T m | ze R,
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and
k(0) = (1 = [6]) + -+« (1 — |od]), el <1,
=0, o] = 1.
Then fRa K(z)dx = 1 and
Jri €K (z) dz = k(6), e R

For a > 0 set K.(z) = a*K(a'2), ze R®, and k.(8) = k(af), 6 R’. Then
' Jra Ko(z) dze = 1
and
Jra ™K () dz = k.(6), 9 R
Now Pi(-, h) is integrable and _
Jra €'Py(x, b) do = h*]Jhet [(1 — € ™) (ih6:) " 1f2(6).
Similarly
[ra €' Pu(Bu(x + An), Boh) de = K [her (1 — ¢7™%) (4h6,) " e *f,"(B,'0).
Set
Va(e, by a) = [re Ko(x — y)Pa(Ba(y + A.), Bah) dy.
Then
(13) Vu(z, h,a) =
2r) ™ [ o1 <ot € a(0) [[hms (1 — € ™) (sh6:) e~ *"°f,"(B,0) do.

It follows from Levy ([5], pp. 221-223) that the logarithm ¢ of f is such that
Ry(8) = —|6]“C(6/]0]), where a e (0, 2] is the index of the stable distribution
and C is a continuous, strictly positive function on the unit sphere in R?. We
have that [f(6)| < 1 for 6 R?, [f(6)| < 1 unless 6 = 0, f(§) — 0 as |8] — o,
and f(6) is integrable. It follows from the integrability of f, by the Fourier in-
version formula and the Riemann-Lebesgue lemma, that the density p of F is
continuous and that p(z) — 0 as |x| — . The density p is therefore uniformly
continuous on R’, as stated in the introduction.

Since the Theorem and Corollary 1 are clearly equivalent, it suffices to prove
Corollary 1. We first investigate the behavior of V,(x, h, a) as n — o, h — 0,
and a — 0.

Lemma 1. If Fy vs nonlattice, then for any N > 0

(14) Va(z, by a) = K (p(x) + 0nna(l)), a z (NB,)™
If F, is strongly nonlattice, then for any fixed ¢ < ¢;
(15) Va(z, by a) = b (p(x) + 0nna(l)),

S
v
(3]
|
§
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In proving this lemma we need to estimate the following integrals:
I = Jazionzer € ™ ha(0) [Tica (1 — ¢7%) (6h6) '™ ~"f,"(B,'0) db;
L = [acioi<es € k.(0)[Tict (1 — &™) (sh6:) e " »f," (B, *0) df;
I = [yor<ae ™ (ka(0) [ T2 (@ — &%) (3h6:) e “"f"(B.7'0) — £(0)) db;
Iy = fA<||a|| e™*’f(0) de.

We note that
(1 — e ™) (k)7 = 1
and
1 — (1 — ¢ ™) (3h6,)7"| < R0y .

Thus for any fixed ¢ > 0
I £ [esa<ion ot |f21(Ba7'0)|" .

If F; is nonlattice (and in particular if F; is strongly nonlattice), then for any
fixed N > 0 there is a § > 0 such that |£1(8)] < ¢’ for ¢ < ||6]] < N. Since (1)
clearly necessitates that B,.;/B, — 1 as n — <, we obtain

Jetu<ion <w, [fi(Bu0)|"d8 < (NBa)% " = 0a(1).

Thus if F; is nonlattice, then a™* < NB, and I; = o0,(1). If F, is strongly non-
lattice and ¢ < ¢;, then N can be made large enough so that

1f1(0)| = exp (—d(c + ¢1)/2) for ||6]] > N.
Consequently

Jusa<ion zeen [f1(Ba'0)|" d8 < exp (—dn(er + ¢)/2 + dnc)
= exp (—dn(ci — ¢)/2) = o.(1).
Hence if F, is strongly nonlattice, then a " < ¢" and I; = 0,(1). We see there-

fore that I; = 0,(1) in either the nonlattice or strongly nonlattice case.

Since the strongly nonlattice condition is not involved in estimating I, , I;,
and I, , we assume throughout the rest of the proof of the lemma simply that
F'; is nonlattice.

Let A > 0 be fixed. Then k.(8) = 1 + 0.(1) as @ — 0, ¢ “**°f," (B, '0) =
f(8) 4+ 0.(1) as n — o, and

i (1 — ™) (h6) ™ = 1 4 (1) ash — 0,

where 04(1), 0,(1), and 0,(1) converge to 0 uniformly in ||6]] < A. Thus for
fixed A > 0,13 = onna(l).

Since F is integrable, A may be chosen so that I, is as small as desired.

We have left only to estimate I, . In particular we have to show that for suffi-
ciently small ¢ and sufficiently large A and n, [a<yoy <es, [f1(Ba"0)|" d8 can be
made as small as desired. A proof of exactly this result appears in Rvadeva [6],
pp. 203-4, and will not be repeated here.
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Since
p(x) = (2r)™ [ra e ™’f(0) db, ze R
the proof of the lemma is complete.
Corollary 1 can be reformulated as

Lemma 2. If Fy is nonlattice, then for any € > 0 and N > 0 there exist ng > 0
and he > 0 such that if n = no, x e R®, and (NB,)™ < h < ho, then

(16) R(p(x) — €) £ Pu(Bu(z + An), Bah) = B (p(z) + ¢).

If Fy is strongly nonlattice, then for any € > 0 and ¢ < ¢y, there exist ny > 0 and
ho > 0 such that if n = ny, x e R®, and ¢ ™ £ h < ho, then (16) holds.

We shall prove only the first statement. The slight modifications necessary
to prove the second statement will be obvious.

Let po denote the finite maximum of p(z), ¢ R®. Choose ¢ > 0 and N > 0.
Since p(z), « ¢ R%, is uniformly continuous, there is an he(0, 1) such that
|p(z) — p(y)| < Leif ||x — y|| < by . Thereis a § > 0 such that (1 4 28)% < 4,
(14+2)%—1=¢and

Jiziss K(2) do = e,
where
(Po+ epo+ 3e)(1 — &)™ —po < ¢
and
apo + e(po + €) = 3e

Sets = (1,---,1) e R% By Lemma 1 we can find no > 0 and ho & (0, hy) such
that forn = no, ze R%, and (NB,) " < h £ ho

Va(z — 8hi, h(1 + 23), 8°h) < h*(1 + 26)%p(z — oh3) + %eh®
< K14 20)"(p(z) + %e) + deb’
< W(p(z) + epo + 3e)

and
Valz + 6hi, h(1 — 25), &%) = B*(1 — 26)%p(x + ohi) — Leh’
2 (1 — 28)"(p(x) — %e) — }e’
2 B (p(x) — epo — %e).
Now

Pa(Bu(x — 8hi — y + Au), Bah(1 + 26)) 2 Pa(Bu(z + Aa), Bah), |yl < o,
and
P.(Bu(x 4+ 6hi — y + An), Boh(1 — 28)) < Pu(Ba(z + 44), Bah), |yl =< k.
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Consequently
Va(z — 6hi, h(1 + 28), 8°h)
= [iyi < Koen(y) Pa(Ba(z — 8hi — y + Aa), h(1 + 26)) dy
Jivi <on Koon(y) Pu(Ba(z + Aa), Bah) dy
(1 — &)Pu(Ba(x + An), Bih).

(1%

Il

Therefore
Pu(Ba(z + Aa), Bah) = K (p(x) + apo + 3e)(1 — &)™
< K(p(z) + ).
Similarly
Valz + ki, (1 — 28), §°h)

< [ywrzon Ko (y) Pu(Bu(z + 8hi — y + A,), Buh(1 — 25)) dy
+ e(po + h°
< Pu(Bu(z 4+ A,), Boh) + e(po + €A

Thus
Pu(Bu(z + Ax), Bah) = K (p(x) — epo — e(po + €) — 2e) = h*(p(z) — ).

This completes the proof of Lemma 2, from which Corollary 1 and the Theo-
rem follow immediately.
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