SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS:
THE BINOMIAL CASE

By PERRY A. SCHEINOK!

Hahnemann Medical College

0. Summary. Estimation of the spectral density of a discrete stationary process
is considered under the assumption that some of the observations are missing
due to some binomially distributed random mechanism. The asymptotic variance
of the estimate is derived for normally distributed random variables. As in the
author’s dissertation [7], the extension to processes which are stationary of
fourth order is fairly standard. It is hoped that one will be able to extend these
results to more complicated random mechanisms.

1. Introduction. When observing a stationary stochastic process at equally
spaced intervals of time, it might happen that the device being used to observe
the process will miss an observation because of some random failure. The exten-
sion to estimating the spectral density in this case utilizes an idea introduced by
R. Jones [3], and generalized by Parzen [5].

Let us be given a sample of size N, z;, - -, xy from a Gaussian stationary
process with mean zero, and absolutely continuous spectral distribution function
F(\). Let f(A) = F'(\) represent the spectral density. Then we have by a
classic theorem of Herglotz [2] that

(1.1) r; = [Z.f(u)e™ du.

Here r; = Ef{z.;}. As is well-known, (Grenander and Rosenblatt [1]), one
usually estimates the spectrum by forming the empirical auto-covariances

(1.2) r* = (N = D725 vy, =0, %1, £2, -+, (N — 1)
and then one forms the weighted sums
(1.3) N = (2m) 7 2 e i w Y (0)e

The function Wx(z — \) = (2r) 7" Dies we™ (\)e™ is called the spectral
window, and is chosen in such a way as to cause the estimate (1.3) to be asymp-
totically unbiased and consistent, i.e., limy.« Efv*(w) = f(u), and

lim,.. Var fy*(u) = 0.

One way of accomplishing this is to choose a basic kernel function W(z) having
the following properties (a) W(x) 2 Oin —7 <z < m, (b) W(z) = 0 for
[z| > m, (¢) W(z) is continuous in —7 < z < m, and (d) [Z, W(z) dz = 1.
For convenience we choose W(x) to be symmetric about z = 0.

One can now obtain a sequence of weighting functions from W (z) by defining
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Wx(z) = By ‘W (xBy"). Here { By} denotes a sequence of positive real numbers
which has the property that By — 0, NBy — « as N — o, and might be con-
sidered as the band-width of the functions Wx(x).

The way this sequence of weighting functions has been defined assures one
that Wy (z) accumulates mass in the neighborhood of = 0 at a slower rate than
the Fejér kernel. This will be very important in obtaining the results of Section 5.

2. Randomly missed observations. Let there be a random process attached to
the device sampling the time series which causes it to miss observations at times.
As in [3], assume that all the samples are present, and attach a new set of weights
in the composition of the estimate to make it asymptotically unbiased and con-
sistent.

Let

a; =1 if x; is read
=0 if x; is mot read.

Let p = Prob {a; = 1} independent of j. Now for the estimate of the spectral
density take

(2.1) ) = [Z Wa(N — $)I¥ (s) ds
where I,'(s), the modified normalized periodogram is now defined as
(2.2) Ix'(s) = (2aN)7{ Z?’él (ai/ P)sz + Zf=1.k¢j Z?:l (ajak/pz)xjxke_i(j_k)s} .

Now we wish that Efy*()\) be asymptotically unbiased. Because of the inter-
changeability of summation and expectation, we have

(2.3) EIy(s) = (2aN)™Y{ 27 [B(ai'z?) /p]
+ Dot riri 2 [Easmsme) /plle 070

Note that the a;’s are statistically independent of the z,’s, since the a;’s are due
to a property of the device, rather than the process being observed. We thus
have

(2.4) E(aixi) = E(af)E(x") = pro
and
(2.5) E(ajaxize) = E(ao)E(za) = pri, j#= k.

Because the z, process is considered to be real, one has that »_, = r, . Hence,
(2.6)  Efy*(N) = (2aeN) 2Vt [T Wa(N — 8)rje 77 ds.

It was shown in [1] that this expression for the expectation has the property
that limyo. Bfy (A) = f(\), which makes the estimate asymptotically unbiased.
This author also proved in [7] that under suitable regularity conditions on the
spectral density, as well as on the weight functions, the bias [by(N)| =
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|Ef¥*(\) — F(\)| is bounded by Kx(log N)/N, where Ky is a function of f and
the sequence Wy . For a more accessible source see [6].

3. The variance of the estimate. Under the assumption that the observed
process is Gaussian, and the assumptions in Section 1, we shall try to compute
the asymptotic variance of the estimate (2.1). We know that

(3.1) Varfu*(\) = [ [Z. Wa(h — )Wx(h — £) Cov {Ix'(s), Ix'(t)} ds di.

Again, let us confine our attention to the covariance of the modified periodo-
gram

(3.2) Cov {Iy'(s), Iy’ ()} = (4="N")7{p™® > o1 2 7= Cov {a/’z, @'z}
P Dimmt Dmtpni 2=t COV {an'Tn’y asmaai} e 0! 4 ¢THIR

+p Zn—-l nvim Dm=l Dmtiti D9t COV { 02Tk ) Ao, )@ IRl

Now use the fact that for Gaussian processes
(3.3) E(xxititm) = Ticiim + TomTick + TieiThem -
This implies that
(3.4) Zk-l 1 Cov {a/z], o'z’

= 3Nr'p(1 — p) + 20" D0 (N — |K])r.

Now consider the second term in (3.2). This term can be broken up into two
sums. One sum has j or k equal to m, and the other sum has none of the indices
equal to one another. Again, using (3.3) one gets that

P D ommt 21,y Dgmt COV {0, gy} {7 "0 o g1
(3.5) =2(3p" = 1) 2t 2=t Turiey [c08 (B — 5)t + cos (k — j)s]
+2 D i D i D Tt strim) T itmei{€ O 0f e iRy

The last summation in (3.2) can be broken up into three different sums. One
sum consists of those terms for which j % k £ m = n. There are N(N — 1)-
(N — 2)(N — 3) terms in this sum. The next sum consisting of 2N(N — 1)
terms has j = m, k = n, or j = n, £ = m. The third sum covers the situation
whenj =m, k= n;5=mnk=m;k=m,j=n;ork = n,j # m. There are
4N(N — 1)(N — 2) terms in this sum. Applying (3.3), one gets that

P 2ty Dommt Dt iy 2 3=t COV { Q000 , ATt} € D=
= Zn=l m—l =1 Z;=1 {JksEmsn ) {%-m’”k—n + 71—n7”k—m}6 ARt m=n)t]
(36) + P 2henamy 21 [0+ (2 — pHrinlleT RO 4 gmiRE)
+ 4p D mm Dot D=ttty (T mek + (2 — PIPiim )

-cos (k — j)scos (m — j)t.
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This finishes the calculation of 4#°N” Cov {Ix'(s), I (¢)}. Substitution in
(3.1) will give us an expression for 4x°N* Var {fy*(\)}. Unfortunately, such an
expression is of a form which conceals its salient features, and thus is not of
much practical use. One is thus forced to resort to asymptotic considerations.

4. Asymptotic estimates of the variance. We shall now examine the terms
calculated for 4x°N® Cov {Ix'(s), Iv'(t)} asymptotically. We shall be working
in the frequency domain. Since the time series is assumed to be real, we have
f(z) = f(—=z) where f(z) enters into our calculations via (1.1).

For (3.4), one thus has that

3Nrep(1 — p) + 20" 2iew (N — |k|)rd’
(4.1) = I JZ f(2)f(y){3Np(1 — p)
+ 120" sin® 3N (2 + y)/sin’ (= + y)]} dz dy.
From the theory of the Fejér kernel, it is well-known that
(42) [Z f(2)lsin® 3N (2 + y)/sin” 3(z + y)] de ~ 2N7f(—y) = 2N7f(y).
Thus, asymptotically, after multiplying by (47°N°p*)™, (4.1) is of the order of
(4.3) 3(4r’N)7(1 — p DI 2, f(2) dal’ + (zN)™* [Z, fX(2) da.
In order to deal with the terms (3.5) and (3.6), we first note that
(44) €™ = e"(e™ — 1)/(e" — 1)] = 'V *(sin §Nt/sin §t).

As in [6], this sum will be denoted by Dx(t).

The actual calculations involving (3.5) and (3.6) are exceedingly lengthy and
laborious. Instead of going through the gory details for each individual sum, we
shall cover the details of one of the sums, and subsequently present the total
asymptotic expressions for (3.5) and (3.6) in their entirety. Consider the last
sum in (3.5). We have that by (1.1),

2 D 1 D1 Dol (i) TmiPmief €0 0F 4 €Y
(4.5) = 2 [ [T f@)f(y) dody X ds S e

. {et[m(m+y)-—y(:c+t)—k(y—t)] + ez[m(z+y)-1‘(z+a)—k(g—a)]} .

Now let us devote our attention to the triple sum. We can rewrite the sum in-
volving ¢ as follows. (We get an analogous sum for the terms involving s.)

. Zk . Z 1 Uik} et[m(z+u)—:(z+t)—k(xr—t)l
,,,= = 7=1,{j

(4.6) = YN S S gimetn—iGt—k-0)
Zm=l Z?;l ez(m—J)(zﬂ/) _ 2;1 Zﬁ=1 gim (=0

N t(k—3) (z+2)
- Zj=1 k=16 D + 2N.

Summing these terms and using (4.4), we get that (4.5) can be rewritten as
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2 [ [Z. #(z)f(y){Dx(z + y)[Dx(z + t)DN(y-— {)
(4.7) + Dy(z +s)Dy(y — )]
—2|Dx(z + y)* = |Dn(y — )I' — [Du(z + 8)|* — |Dn(z + 8)[* + 4N} dz dy.

Using (4.2) and the theory in [6], p. 172, one gets that asymptotically (4.7) is of
the order of

(48) 8NIf(t) + f'(s) — 77" [Z. f(@)[f(z) + f(s) + ()] dz
+ 7 {2 f(x) da}’].

A similar break-up and analysis is done for each term in (3.5) and (3.6). The
result is that after division by 4#’N* (3.5) is asymptotically of the order of

(xN)7'Bp™" — 1] [, f(x) dalf(t) + f(s) — a7 [Z. f(y) dy]
(4.9) +2N7F () + f(s) — 7' [, f(z) dalf(x)
+ 7(s) + 7] + =7, f(x) dz}?]

and (3.6) is of the order of
)OI IDa(s + OF + [Du(s — Y} — 2N{f(t) + £(s))?
— (2eN)Y{|Dn(s + t)" + |Dx(s — Of(8) + f(1)] [Zc f(2) dac
+ 4(xN)7If(s) + f0)] [Z. f(z) dz + (xN) [Z,f*(z) da
+ (4e*N)H{|Du(s + 1) + |Du(s — 1) — 12N}[[Z, f(2) da]’
+ (4°N*p") {|Dx(s + t)* + |Du(s — t)[*
— 2N (3 — pP)}[fZ. f(z) da]’
(410)  + (aNp)7 [L f(@)[f(x + s + t) + f(z + s — )] de
+ (prN){[f(s)N{|Dx(s + ) + |Dn(s — 1)[]
— 2(3 — p)(f(s) + ()] [Z.f(=z) da
+ 4n(2 — P)f()f(t) — (2eN)[[Z, f(x) da]’
‘[IDx(s + ) + |Dx(s — )" — 2N (3 — p)]
- 32— D) [Lf@f(x+s+t) +flz—s+1)
+fx+s—1t) + f(z — s — t)] dx}.

The asymptotic approximation of Cov {Ix'(s), Ix'(t)} is thus embodied in
the sum of the terms (4.3), (4.9) and (4.10). Our final approximation will in-
volve the behavior of these expressions when acted upon by the weighting func-
tions.

b. The second asymptotic approximation. In order to apply asymptotic approxi-
mations to (3.1), we note that under the assumptions of Section 2, we have the
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following auxiliary results. We use the techniques of [4] and [7] to obtain that
J JZ IDx(s + 0" + [Du(s — OFIf()f () Wa(s — N)Wa(t — \) ds dt

(5.1) ~2zN [Z (WAt — N) + Wt — NWa(—t — \)] dt
~ 2eNf (N By~ [Z, W (u) du, N\ =0,
and
~ 4aNf*(\)By"' [Z, W (u) du, =0,

In the light of the theory developed by Parzen [4], one is interested in considering
limy. NBy Var fx*()). If one examines all the terms constituting Var fx*()),
one notes that except for the terms involving [|[Dx(s + t)|* + [Dn(s — t)[%], all
other terms go to zero under the above limiting operation. Thus we are primarily
concerned with the term

A(s,t) = N{|Dx(s + t)[ + [Du(s — 8)[*}
(52) (&) — Gs) + 7)) (2m) 7 [, () dw
+ f(s)(pm) ™ Lo f(=) dx + (42°) (1 — 7V, f(x) da}.
This term is now considered with the weighting functions as
(5.3) limyow NBy [ [Ze A(s, ) Wa(s — N)Wx(t — \) ds dt.

Using (5.1), and the properties of the weighting functions listed in Section 1,
one gets the final result that

limy. NBy Var fx*(\) = 27[f(\) — (2r)7'(1 — p )
(5.4) JZof(@) dal’ [Z, W(u) du, N %0, £,
= 4a[f(\) — (2m)7(1 — p )
JI f(x) dof [Z WP (u) du, X\ =0, £7.
It should be noted that the final result satisfies the essential criteria for such a
situation, i.e.,
(a) the variance is positive;

(b) the variance is increased as p is decreased;
(e¢) as p — 1 we obtain that

(5.5) limy.o NBy Var fy*(\) = 2af*(\) [, W(u) du, N > 0, %,
= 4xf*(\) [Z, W*(u) du,  otherwise,
which is the classic result in spectral analysis of stationary time series.
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