ESTIMATION OF THE BISPECTRUM!

By M. RoSENBLATT AND J. W. Van NEss

University of California, San Diego, and Stanford University

1. Summary. Recently interest has arisen in statistical applications of the
bispectrum of stationary random processes. (The bispectrum can be thought of
as the Fourier transform of the third-order moment function of the process.)
The principal area of statistical harmonic analysis to receive attention previous
to this time has been second-order (i.e. spectral) theory on which there is a vast
literature. However, the spectrum is most useful in problems of a “linear nature’’
(see discussion beginning on p. viii of Blackman and Tukey [2]) and provides
insufficient information in nonlinear problems.

A desire to study phenomena of a nonlinear character has attracted attention
to the higher order theory. Such was the case, for example, in a recent study by
Hasselmann, Munk and MacDonald [8] where the bispectrum is used in connec-
tion with oceanographic problems, among which, as the authors state, a number
of interesting phenomena such as surf beats, wave breaking, and the energy
transfer between wave components can be explained only by the nonlinearity
of the wave motion.

The bispectrum therefore provides a first glimpse at the nonlinear effects. It is
the purpose of the present paper to discuss estimating the weighted and un-
weighted bispectral density given a set of observations of the process. The rele-
vant properties (consistency and asymptotic unbiasedness) of the estimates
are derived for certain general classes of processes.

2. Introduction. The indexed set of random variables, {X,}, is called a con-
tinuous parameter random process if the index set, T, is the real line and it is
called discrete parameter if 7' is the positive and negative integers. For our
purposes we take X, to have mean zero and finite sixth-order moments and to be
real-valued sixth-order weakly stationary all of which implies that for all ¢,

ECC: = 0,
EX;XH,p = mz(t, t + V) = T(V),

(21) EX;XH."XH.” = ’Ina(t, t + V1, t + Vz) = 7‘3(1!1 y 112),

EX Xy, Xepwy = me(t, ¢ + w1, -+t + ) = 15(vn, -+, w).

Consider r(») and r3(»1, »2) to be in L; (or ;) and in the continuous parameter
case to be continuous. It is well known from second-order harmonic theory that
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r(») has a Fourier-Stieltjes representation in terms of the spectral distribution
function, F(\). Take F(\) to be absolutely continuous with a continuous density,
f(\); then this representation becomes

(2.2) r(v») = [20e™f(N) dA.

(Throughout this paper, all formulae shall be written for the continuous param-
eter case; the discrete case can be obtained by easy modifications.)
Further

(2.3) fO) = @) 2e e (v) db.

Analogously, in third-order harmonic theory we can define the bispectral density
funetion, g(\1, N\2), as

24) g\, X)) = (2m) [ 2e [Zwexp (—ivh1 — twaNa)7s(vy, 2) dvy dys

and, assuming g(A1, \2) € Li(Rs),

(25)  1s(vm, m) = [Zu[Zwexp (M + wah)g(M, N) dNid)z.

(For a discussion of the existence of the higher order spectral representations
under some conditions, see Blanc-Lapierre and Fortet [3] and Sinai [20].) This
then is the harmonic representation of the third-order moment function under
the above assumptions.

Since the process is real, the following symmetries occur in the third-order
functions

(2.6)  ra(n, ve) = ra(ve, ) = rs(—w1, v2 — w),
(2.7) g, Ne) = g, M) = gy =M — M) = g(—N1, — M)
The symmetries (2.6) imply that r3(v, »,) is completely specified over the en-

tire plane by its values in any one of the six sectors, through @, shown
in Fig. 1. These sectors include their boundaries so that, for example, seetor

@ is

(2.8) 0=n< @, 0

IIA

ve = 1.

®

45°

vy

Fia. 1 Fia. 2



1122 M. ROSENBLATT AND J. W. VAN NESS

Similarly g(M, A2) is, by (2.7), completely specified by its values in any one
of the twelve sectors (including boundaries) shown in Fig. 2. A later paper will
discuss the slightly more complicated situation which arises in the discrete param-
eter case.

Recall from second-order theory that the process permits the representation

(2.9) X, = [2.e™dZ()N),

where Z()\) is a random process of orthogonal increments with (in the case of a
real process)

EdZ(\) = 0,
(2.10) EdZ(N) dZ(N) = (M + Ne) dF (M),
iz) =1 ifz=0
=0 if z # 0.

Equation (2.10) yields an interpretation of the spectrum. When there exists a
Fourier-Stieltjes representation of the third-order moment function in terms of a
complex-valued bispectral distribution function of bounded variation, a similar
result holds:

(2.11) EdZ(N) dZ(N) dZ(Ns) = (M + N2 + N3) dG(\1,y Ne).

More particularly a real process (implies dZ(\) = dZ(—\)) has the real repre-
sentation

(2.12) X, = [7 cost\dZi(\) + [§ sin ix dZy(N\)

where dZ;(\) = 2 Re dZ()\) and dZ:(\) = —2 Im dZ()\). It is interesting that
these functions allow us to obtain the following insight into the role of the real
and imaginary parts of the bispectrum. In these relations note' that when
E dZ; (N) dZ;,(N) dZ;,(N), s = 1, 2, is nonzero, it is equal to some multiple
of the real part of d@ if an odd number of the j’s equal 1 and equal to some mul-
tiple of;the imaginary part of dG if an even number of the j’s equal 1.

E dZi(M) dZy(Ne) dZi(Ns)
= 2 Re [dG(\, N)d(M + N2 — Ng) + dG(Mi, N)S(M — N2 + Ng)
4 dG(A2, N)8(—NM + A+ Ns) + dG(0, 0)8(A1)5(N2)8(Ns)]
E dZ>(N\) dZa(Nz) dZy(Ns)
= —2Im [d@(A\1, N2)d(M 4+ A — Ns) + dG(A, N)d(M — A+ Ns)
(2.13) + dG(N2, Ne)d(—M + N + No)]
E dZy(\1) dZi(Ns) dZa(Ns)
= 2TIm [dG(M, M) F A — Ng) — dG(M, M)E(NM — N+ Ng)
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= dG(Ng, M)(—N + N + Ng)]
EdZy(N) dZy(N) dZ2(Ns)
= 2 Re [dG(M, M)d(M + A — Ng) + dG(M, M)O(M — A2 + )
— dG(Ma, Na)(—N + A+ Ng) — dG(0, 0)8(M)8(Ae)d(Ns)].

It is also worth noting that the symmetries indicate that the integrals in
Equations (2.4) and (2.5) can be taken over one (or more) of the sectors in-
stead of over the entire plane.

3. Estimation. Given observations, #,, for 0 < ¢ < N, natural estimates for
the bispectral density, g(\1, A2), are those based on a function, gx(\ , A2), which
is analogous to the periodogram of second-order theory (see, for example,
Rosenblatt [17] for a discussion of periodogram theory). The usual estimate for
Ts(lll , Vz) is

(31) pN(Vl ) Vz) = N—IIDN(Vl.'z) Ll t49, L t4vq dt

where the interval Dy restricts 2, , Zs1s, , and 24, to the domain in which they
a,re:deﬁned (The set ® is the empty set.):

DN(Vl , Vz) =& if Ivll or IVzI or |V1 el Vzl > N
= [—min [0, »1, »o], N—max [0, vy , »]] otherwise.

It is intuitively plausible that if r3(», v2) is replaced by px(»1, v2) in (2.4), the
resulting function is an estimate of g(A\i, A\z), thus

(3.2) gN()\l N )\2) = (21)—2 I_V.N f}v exp (-—1:111)\1 - 1:V2)\2)p)v(111 ) Vz) du1 dllz .

There are two customary requirements made of such estimates:

(i) the estimate should be asymptotically unbiased,

(ii) the variance of the estimate should go to zero as N — .
Theorem 1 states that under certain conditions on the process, { X}, px(v1, v2)
has both properties. However, gx(M\1 , A2), like the periodogram, has only Property
(i) and not Property (ii). Prompted by the results of second-order theory, one
corrects this difficulty by considering weighted estimates of the form

(3~3) gn*(W) = :o °—°w W(Ml ) #2)91»’(#1 ’ Mz) dm dl-tz

where W(u1, u2) is a “bispectral averaging function” to be defined later. By
Theorems 2 and 3 below, it is seen that under certain conditions on W and the
process, gy (W) is an asymptotically unbiased estimate of

(3.4) g(Ww) = ffw ot W(p1, p2)g(ps, pe) du dus

and that ¢*(gn*(W)) — 0 as N — «. Therefore gn (W) suffices as an estimate of
(3.4) but it obviously is not an asymptotically unbiased estimate of g(A\1, N2).
To get an estimate of the bispectral density itself with both Properties (i) and
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(ii), a sequence of weight functions, { Wy(u1, u2)}, can be used so that
(35) gn (M, N) = [Z0 [20 Walps — M, g2 — No)gw(p , p2) dpa dus .

Appropriate choice of the weight functions will give gx™(A1, A;) Property (ii).
As N increases, the weight functions should narrow the region averaged over
(that is tend to behave more and more like a two-variate é-function with the
“spike” at the origin); this tends to give the estimate Property (i). A proper
rate of concentration by the weight functions must be chosen so that (under
certain conditions on the process and on {Wy}) both properties can be obtained
simultaneously (see Theorems 4 and 5).

4. Hypotheses characteristic of this paper. Fourth and sixth-order moments
arise during the investigation of the covariance properties of the estimates. It is
necessary to make some kind of assumption on these moments. A very advan-
tageous assumption involves the use of cumulant (semi-invariant) functions
(see Stratonovich ([21], Chapter 1) and Leonov and Shiryaev [11] for a discus-
sion of cumulant functions). These functions are defined in a manner completely
analogous to the way ordinary cumulants are defined for a single random variable.

Let a random vector n = (91, -+, 7:) be given. Its characteristic function is

(4.1) enar, *++, ax) = Eexp (doum + -+ + doume).

Assume E|n;|" < «; then the mixed moments
(4.2) m(vl ..... Vi) - Eﬂln . ﬂk,‘k

exist for all 1, -+, v, such that »; = 0 and »; + --- + » = n. Consequently
¢, has the Taylor expansion

(43) opan, =+ o) = Dpoocman (T ur L MR g
+ o((lea| + -+ + Iakf)”)

where the sum is over all non-negative »,, - - -, », whose sum does not exceedn.
Furthermore, log ¢, has a Taylor expansion exactly as in (4.3) except with
m® " replaced by the coefficient s®*'**"¥. The quantities s**""® are called
the cumulants of the vector 5. Also m*""¥ can be expressed as a polynomial
in the s 0 < y; < v;,7 =1, ---, k (and vice versa) (see Leonov and
Shiryaev ([11], p. 320)). For a process with zero mean, the two expressions
needed in the following are

(4.4)  ma(vi, --o, va) = sa(v, o0, v) + {82(v1, v2)sa(vs, va)ls
and
(4.5) me(v1, <=+, %) = ss(vi, -+, v6) + {s3(v1, vz, v3)8s(vs, w5, v6) }10
+ {s2(v1, va)sa(vs, -, o) bis + {s2(v1, v2)sa(ws, wa)se(vs , ¥6)}1s

where (for n» = (X,,, ---, X,,)) for example



ESTIMATION OF THE BISPECTRUM 1125

so(vy, vg) = 0000,

32(V1 , V3) — 8(1.0,1,0,0,0)’

1,1,0,0,1,1
) — S( )

Sa(vi, 2, v, v , ete.,

and where the notation {-}; denotes the sum of all j different terms obtained by
interchanging the arguments of the terms in brackets (the order of the arguments
of the s; being immaterial) (see Tables I, IT and III below.) Thus (4.4) is

ma(vy, o, va) = Sa(v1, =+, va) + sa(v1, va)sa(ws, vs)
+ so(v1, va)sa(va, va) + s2(v1, va)sa(ve, v3).
Note that in the case of zero mean,
si(v) =0,

(4.6) ' $o(vi, v2) = ma(v1, »),

ss(v, vo, vs) = ma(vy, va, v3).

Due to stétionarity we write
_ so(t, ¢+ v) = &(v),

(4.7) :
se(t, t +viy oo, 0+ vs) = E(v1, +- -, v5).

Then the basic assumption on the process used in the following s that
&(v1, va, v3) € Li(Rs) and &(v1, - - - , vs) € Li(Rs). This is a large class of processes
which includes, for example, normal processes (trivially) and linear processes.
More significantly, it includes all k-step dependent processes (see Hoeffding
and_Robbins [9]) (linear or nonlinear) which have sixth-order moments. The as-
sumption that £ ¢ L;(R;) was used by Magness [12] and Parzen [13] in works on
spectral theory.

b. Third-order moment estimation. It was stated in Section 3 that, under
certain restrictions, px(#1 , v2) is an asymptotically unbiased estimate of 73(» , v2)
and that o’(px(v1, »2)) — 0 as N — . The specific result is

TueorewMm 1. If (a) {X,}, EX.: = 0, s a real, 6th-order weakly stationary process,

(b) r(v), r3(n1, »2), &a(v1, v2, v3), (w1, -+, v5), §(\, No) € L, and

(e¢) v(N) s a real function that is o(N ), then

(5.1) (1) limyaw Y(N)|Epn(v1, v2) — r3(m, »)| = 0,
(2) limw,e N cov [px(v1, v2), px(vs, v4)]
= [Zodylre(vr, va, y, ¥ + vs, y + ) — 13(v1, »)7s(vs, v4)]
(5.2) = [Zadyles(os, v2, 9y + s, ¥ + w)
+ {ma(0, vi, ve)ma(y, y + v3, ¥ + va) 1
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+ {ma(0, »)sa(v2, y, y + vs, ¥y + vo)}1s
+ {ma(0, v1)ma(v2, y)me(y + vs, y + ve)}us]
where

{ms(O, V1, Vz)ms(y, Y+, y+ V4)}1o—1

= {mg(0, »1, vo)ms(y, y + v3, ¥y + va)}o — r3(v1, v2)7r3(vs, va),

(3) Equation (5.2) can be written in the “frequency domain” provided & and &
have Fourier transforms which are suitably regular (see [18]).

Proor. Assertion (1) is immediate and (2) is almost as immediate but will be
proved in order to introduce some notation.

NE[pn(v1, v2) — Epn(v1, v2)) (pn(vs, vs) — Epn(vs, va))]
(53) =N [oyois0 @t [oyoeso drlme(t, t +o1, t 4 v, 7,7 + s, 7 + 0)
— 13(v1, va)rs(vs, va)].
Lety = 7 — ¢, t = t to get
(54)  [EvdylCx(r1, va, va, va, y)/Nllrs a,y v2, 4, y + 93, ¥ + 2)

— 13(v1, v2)rs(vs, va)]

where Cy is defined as follows (see Fig. 3):
1. Construct the set Dy(v1, »2) X Dy(v3,v) = Dy,
2. take the intersection of this set with the line 7 — ¢ = y and call that seg-
ment Cy y
3. then Cy(v1, v2, vs, v, y) is equal to the length of the projection of Cy onto
either axis.

T IT-t=y
Nf====——m—m - pkamt A
‘1l

/ N y=0

ﬂz
>

" /, '/

[0,
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Note that Cx can be written out analytically in terms of its arguments but the
expression is cumbersome and not as enlightening as Fig. 3. Also, 0 = Cx/N =1
and Cy/N — 1 as N — o uniformly on any fixed finite set of Cx’s arguments.
Using (4.5), (5.4) becomes

2w dy(Cx/N)[&s(v1, v2, y + w5,y + 1)
(5.5) + {ms(0, v1, vo)ma(y, y + vs, ¥ + v4)}ro
+ {ms(0, vi)ss(ve, ¥, ¥ + v, ¥ + vl
+ {ma(0, vi)ma(ve, y)ma(y + s, ¥ + v4)}usl-

Tables I, II, and III display the individual terms (later called minor terms)
which make up (5.5). Looking at each of these 40 terms separately, it is obvious

TABLE 1
The ten terms which sum to give the expression {ss(0, »1 , »2)ss(¥, ¥ + vs , ¥ + vo) }wo .
minor term number 83 (v ¢y *)ss(ey o, 0)
1 r3(v1 , v2) r3(vs , v4)
2 r3(v1, ¥) r3(y +vs —va, Yy + va— »)
3 r3(ve , ¥) rs(y +vs— v,y +va—w)
4 rs(o1, ¥ + vs) rs(y — vz, Y +va— )
5 rs(ur, Y + va) r3(y — v2, Y +vs — »2)
6 r3(ve , y + vs) rs(y — vi, Y+ va— w)
7 rs(v2 , Y + va) rs(y — vi, Y+ vs — 1)
8 r3(y, Y + »s) rs(ve — v1, Y + va — »1)
9 r3(y, Y + va) r3(ve — v1, Y + vs — v1)
10 rs(y + vs, Yy + va) r3(va — v1, Y — »1)
TABLE II
The fifteen terms which sum to give the expression {s2(0, v1)sa(v2 , ¥, y + vs , ¥ + va)ls .
minor term number ma(+, *)sa(, -, *)
1 r(v1) £a(ve — Y, vs , va)
2 r(v2) &(n — Yy, v, va)
3 r(vs) &1, va, v+ y)
4 7(va) g, v2, 3+ )
5 r(y) e — v,y +vs— v,y +va—w1)
6 r(vs — »1) E(—y, va , v4)
7 T(V4 - "3) 54("1 sy V2, y)
8 r(y — ») £v2 , Yy +va, y + vi)
9 r(y — v2) gL,y +vs, Y+ v)
10 r(y + »s) £ — y, va — Y, v4)
11 r(y + va) £(v1 — Y, v2 — Y, v3)
12 r(y + vs — »1) £a(v2 , Yy, y + va)
13 r(y + vs — »2) &1, Y,y + va)
14 r(y + va — »1) Ea(va, Y, ¥ + v3)
15, r(y + va — »2) £, Y, Y+ va)
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TABLE III
The fifteen terms which sum to give the expression {s3(0, v1)ss(vz , ¥)S2(y + vs, ¥ + v }is «

82(" ')32(‘) ')82(" ')

minor term number

1 r(v1) r(ve — Y) r(vs — va)

2 7(v2) r(y — y) r(vs — vq)

3 r(v1) r(y + vs — v2) r(vs)

4 r(v2) r(y + vs — ») 7(ve)

5 r(v1) (Y + va — v2) 7(vs)

6 r(v2) (Y + va — ») 7(vs)

7 r(y) r(v2 — »1) r(ve — v3)

8 r(y) r(y + vs — »1) r(y + va — v3)
9 r(y) r(y + vs — ») (Y + va — )
10 r(y + vs) r(vs — v1) 7(va)

11 r(y + va) r(ve — v1) r(vs)

12 r(y + vs) r(y — ») r(y + va — v2)
13 r(y + vs) r(y — v2) r(y + va — v1)
14 r(y + va) r(y — v) r(y + vs — »2)
15 r(y + va) r(y — v2) r(y + vs — »1)

that the expression in square brackets is absolutely integrable with respect to y
on (— o, » ). Thus writing [Yy dy as [Z. dyx~(y) where xx is the characteristic
function of the interval [— N, N, (5.5) can be looked upon as the infinite integral
of a sequence of functions, xx(y)(Cx/N)[-- -], which (by the properties of Cy)
tend to zero pointwise and are dominated by the fixed L;(—«, ) function
given by the absolute value of the expression in square brackets. Consequently,

Lebesgue’s dominated convergence theorem gives the result.
Q.E.D.

6. Estimation of the weighted bispectral density. Next consider estimates of
the form (3.3),

(3.3) g (W) = [Zu [Z0 W1, p2)gn(ur, pe) dus dps .

The following conditions will be placed on W.
DeriniTION 1. A bispectral averaging function, W(u1, pe), of order « > 0 is
(i) real-valued,
(i) eLy N Ly, and
(iii) its Fourier transform (which is bounded and L.),

(6.1)  w(n, ) = (2r)7" [Zo [Zuexp (—iv — wau2) W (g1, pe) dus dps

is such that [w(y1 , »)| = O(|n| + [»]) ™™
Condition (iii) could be weakened. Note that (iii) implies that there are
constants K; and b > 0 such that for all |»| and/or |»s| = b,

(6.2) [w(ve, »)| < Ka([o| + [ve])™"
THEQREM 2. If (a) {X,} is 3rd-order weakly stationary, real,
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(b) 7r3(v1, v2), (M, Ne) € La(Rs), and

(e) W(m, ue2) is a bispeciral averaging function of order s + ¢, ¢ > 0,0 < s <1,
then limy, N* |[Egy* (W) — g(W)| = 0.

Proor. By (3.2), (3.3), and (6.1)

N* |Egy* (W) — g(W)]
(6.3) = N'|E fI—VN ffN w(v, v2)lpw (1, v2) — 73(v1, v2)] dvady,
- f f|”l|°'|"2|>N w(vy, v2)73(v1, v2) dvy dal.

The second integral on the left hand side of (6.3) tends to zero in absolute value
by the boundedness of w(», v.) and the fact that r3(v1, v2) € L. The first
integral is

(64) =N°|f%% [Zyw(o, w)[l — [ex(r1, v2)/N] — 1lrs(v1, v2) dv doy
where
(6.5) ex(v1, v2) = min [éx(v1, v2), N]

’ én(n, va) = max [, o], [ — all.

Since ¢y < |n| + [v2 and by (6.2), the integrand of (6.4), [ex(v1, ¥2)/N' Jw(n,
ve)73(v1, »2), is bounded in absolute value on (— «, «©) by K, [r;(v, »2)| for
some K, . This integrand converges pointwise to zero so that again by Lebesgue’s
dominated convergence theorem the result is proved.
Q.E.D.

Property (i) of Section 3, the asymptotic unbiasedness, is therefore shown.
Now turn to Property (ii) of Section 3.

TuroreM 3. If (a) {X,} is 6th-order weakly stationary, real,

(b) T(V)) 7“3("1 ) VZ)’ 54(1’1 y V2, V3)7 EG(VI y T V5)7 g(yl ) V2) £L1 ’ and

(¢) Wilwr, m), J = 1, 2, are bispectral averaging functions of order 1 + ¢;,
€; > 0, then

(1) limysw N cov [gx (W), gn™(W3)]
= (2 20 [2uduy - dvadywi(vi, v2)wi(s , va)
(i, v, v,y +vs, ¥+ wa) + {ma(0, v, v2)ma(y, y + v, y + v4) }r0
+ {m2(0, v.)sa(v2, ¥, ¥ + 3, ¥ + v)lis
+ {m2(0, »)ma(ve, y)ma(y + vs, y + va)}usl,

(2) Equation (6.6) is written in the “time domain’’; the result can be written in
the “frequency domain” (see [18]).
Proovr. Recalling the proof of Theorem 1,

NE[(gn*(W1) — Egx"(W1))(gv™(Ws) — Egn™(W3))]
= [Ty fZN sz wi(v1, Vz)wz(VS , V4)[CN(V1 , o, va, Y)/N]

(6.6)
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(6.7) Les(vi, v,y y +vs, y + va) + {ma(0, w1, vo)ms(y, y + v3, ¥ + va) }r01
+ {me(0, v1)ss(ve, ¥, ¥y + v3, ¥y + va)}1s
+ {m2(0, v)ma(ve, Y)me(y + w3, y + va)}ss] don -+ - dva dy.

It remains to be shown that the integrand with the (Cx/N) term replaced by 1
is absolutely integrable on (— «, ). To do this, consider the right hand side of
(6.7) as made up of four “major terms” or 40 “minor terms”, where the first
major term and the first minor term are identical and the remaining minor terms
are enumerated in accorance with Tables I, IT, and III.

Each minor term is treated separately. Minor term 1 is obviously summable
since w; and w, are bounded and % ¢ L;(Rs). The remaining minor terms are
grouped according to the major terms within which they are contained.

Lemma 1. The hypotheses of Theorem 3 imply that

(1)
(6.8) [Za -+ [Zu [Z0|{ma(0, w1, va)ma(y, v + vs, ¥ +oa) }ros
wi(v1, v2)wa(vs , va)| A1 -+ - drady < oo,
(2)
(6.9) [Za - [Z0 [Zul{ma(0, m)ss(ra, 4, y + v, ¥ + )}
wi(n , 1) iae 9| dvn - -+ ddy < <o,
(3)
(6.10)  [Zu -+ [Zu [Za [{ma(0, vi)ma(ve, Ima(y + 95, ¥ + m)}ss
wi(v1, va)wa(vs, va)| Ay + - - drady < .

Proor. The proof follows using the integrability properties of s, r3 and £ and
(6.1) and (6.2) (see [18] and [19]). Q.E.D.
The previous statements and Lemma 1 show that there is an L; upper bound for
all N on the integrand. Therefore the properties of (Cx/N) and Lebesgue’s
dominated convergence theorem give (6.6). Q.E.D.

7. Estimation of the bispectral density. The most interesting properties are
exhibited by the third form of estimate introduced in Section 3,

(8.5)  gn O,y Ne) = [Z0 [Z0 Walus — My sz — No)gw(p , ue) dus dpsa .

Properties (i) and (ii) of Section 3 will be discussed not for the general form
(3.5) but for a subeclass of estimates described by first defining a bispectral esti-
mating kernel.
DeriniTION 2. A symmetric bispectral estimating kernel, w(»; , v2), of order
a>0is
(1) real-valued, ¢ L, ,
(ll) ’M)(Vl, Vz) é M1 < ©,
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(iil) w(r, ve) = w(ve, 1) = w(—w, v2 — 1) (same symmetries as those of
r3(n1, 1)),
(iv) for every ¢ > O there exists an M, such that uniformly in »,,

Jiasay (Wi, m)| dn =
(v) and
w® = supp lim,, 0 [[1 — w(on, w)|/(In] + [»])%,

where P = all possible paths, is well-defined and finite.
Letting {Bx} be a sequence of positive constants tending to zero as N — o, the
estimates then discussed are of the form

(7.1)  gn* (M, ) = (2m) 7" [Ey [Py exp (— M — 2hamn)
~w(Byv1, Byve) pw(v1, v2) dvr dvy .
By Condition (i) above, w(», v2) is a Fourier transform in the L, sense,
(72)  wln,n) = [Zo [Zoexp (—ih — @) W, ) dh dAs,
Using this, (7.1) can be rewritten as
(7.3) gn" (M, M) = [Z0 [2By " W[(u1 — N)/Bnw), (2 — Na)/Bulgn (a1 , p2) dpua dps

which is of the form (3.5). Parzen [13] uses an analogous estimate for the spectral
density. The rate at which By — 0 governs the rate of concentration of the weight
functions.

Condition (iii) of Definition 2 implies that gy*(A\1, N\:) has the same sym-
metries as (A1, Az2). It is not necessary in proving the following theorems, but is
included merely to permit the statement and proof of Theorem 5 to be written
more compactly. A discussion of the nonsymmetric case including a statement of
the theorems is in [19].

For convenience of notation, define the generalized gth weighted (with respect
to some bounded weight function &) bispectral derivative, ¢‘”(u1, ns), by

(74) ¢9(m, ma, )
= (2‘”)_2 foo foo exp (—"7:}&1111 —’iﬂsz)(lﬂll + Illzl)qrg(vl , Vz)h(lll y Vz) dvy dy; .

Then the bias of (7.3) satisfies the following.

THEOREM 4. If (a) {X,} is 3rd-order weakly stationary, real,
(b) 73(m, 1), (M, Ne) & Li(Rz),
(€) JZo [Za (] + [v2)rs(v1, 32) dvidin < 0, ¢ > 0,
(d) w(w, v2) s a bispectral estimating kernel of order a > q, and
(e) By chosen such that as N — «

(i) By —0,

(ii) ByN — = if ¢g=1

By'N - o if ¢g>1
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then
(7.5) limN‘m BN_q IEgN*(F'l , [J,z) —_ g([.l,] , pg)l = 0 'L'f o> q
= Ig(Q)("l y M2,y w(Q))I 1’f a=4(q

where in the case a = ¢, w(v1 , vo) s assumed to have the property that for almost
all (1/1 y Vg),

(7.6)  limyow (1 — w(Bww1, Bye))/(|Ban| + |Bwwa|)? = w9 (n1, v).
Proovr. Break up the bias expression into three terms,

By "(Egy™(p1, m2) — g(p1, m2))

= [BN_Q/(2T)2][IZN ffzv exp (—ipw1 — ugve) (W(Bwvr, Bavz) — 1)13
(7.7) o(v1, v2) dvy dvs

— J2x [Zy exp (—tpon — duers) {min [max ([, [, [n — ), NI/N}

«w(Byv1, Byva)rs(v1, v2) dv1 die

- fflnlorlnblv exp (—iuw1 — tueve)rs(v1, v2) dvi dvs).

The third term is
S(NBy)™ [ [istoriarsn (] =+ [w2])? |ra(oa, v2)| dvidve — 0
by (c) and (e). The second term of (7.7) is
(7.8) S(My/ByN) [Yy [y (Jna] + [ |ra(on, v2)| dvr e .
First suppose ¢ < 1; then (7.8) is
<[My/(NBw)T [Zx [Z [l + o) 7/N79(l + [2)? Irs(ony 92)] dvs dve — 0
by (c) and (e). Next suppose ¢ > 1; then (7.8) is
<(My/NBy") [Zy [Zx (Il + el )rs(on, 92) drdvy — 0
again by (c¢) and (e). Therefore
1imyae By 2 |Egn™(p1, 12) — g1, p2)|

(7.9) = (27) " limyaw | [2x [Zx exp (—tpwr — dugme) (] + o)) 73(v1, v2)

[(w(Byv1, Byvz) — 1)/(|Byw| + [Buve])®1(|Bava| + |Bwwa| )™ dvy dsl.

Since w(»: , v2) is a bispectral estimating kernel of order «, there exists a constant
K; such that the integrand of (7.9) is bounded by K;(|vi| + [ve])? |rs(v1, v2)]
which is integrable. Q.E.D.

Secondly, the asymptotic behavior of the variance can be described under the
assumptions listed in the next theorem. In the proof of this theorem the following
lemmas are needed. Lemma 2 is motivated by the Riemann-Lebesgue lemma. The
proofs are simple and are omitted (see [18]).
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LemMA 2. The hypotheses of Theorem 5 imply that

(1) [ [¥y dvydvsexp [—ivys — va(us/Ba)w(Bavy , v2)7(») — 0 as N — oo
unless us = 0,

(2) fi‘u s ffu ffu dl/l e dV4 dyexp {—ivl(ul/BN) - 7:1’2[12 + ’1:1’3[1«3 + ’ilq
(us/By)}w(vy, Byva + v)w(Byvs + v, va)r(y)r(y + w)r(y — v2) — 0 unless
m = p = 0.

LemmMa 3. If (a) {v(M, N)} is a sequence of constants,

(b) v(M) = limy..v(M, N) exists for all M,

(e) ¥ = limuy,w v(M) exists, and

(d) for any € > O there exists an Moy(e) such that for all N > M > M,,
I'Y(M’ N) - 'Y(N) N)I <eg
then limy.. 'Y(N, N) = 7.

TueoreM 5. If (a) {X.} is 6th-order weakly stationary, real,

(b) r(»), rs(v1, »2), ta(v1, 2, vs), Ea(v1, <+, »s), (M, No) € L,

(e) w(v, v2) is a symmetric bispeciral estimating kernel,

(d) By is a sequence of positive constants such that

(i) Bv—0 as N — o«

(ii) By’'N — « as N — o,
(e) w(n, v) is continuous a.e. and for a < «, w(Bya, v2) — w(0, v2) for almost
all v;, and

(f) for brevity in writing results, (u1, ue) and (us, ps) are taken in their first
sections of definition as shown in Fig. 2,ie.0 = py,ps < 0,0 S pe S 1,0 = s
é M3y then

limy..o NBy® cov [gn™*(p1, p2), g™ (ps, 1))
(7.10) = (2m) ' [f(w)f Cua)f (x4 ) f Cuia)f (ia)f (s 4 )1
o {wid (p2)d(ua)[1 + 28(u)][1 + 26(us)]
+ wad (1 — wa)d(pz — wa)[l + 8(u1 — pa) + 40(p)8(u2)1},
where w, = [[Zow(0, ») D, w = [Zo [Zaw’ (41, v2) dvidys.

Proor. The proof will be given in a series of lemmas and individual discussions
of major and minor terms. Recalling Theorems 1 and 3, write

NBx cov lgn™ (p1,m), g (pa, pa)]
= (By'/(2m)") [Xy -+ [Zydvs - - dvaexp (—ipws — ipove + Guavs + Guave)
«w(Bwv1, Bave)w(Buvs, Nave) [Yn dy(Cu(v1, -+, va, y)/N
&G, v2, 4,y + v,y +va) + {ma(0, v, va)ma(y, y + v, ¥ + v}
+ {ma(0, v1)sa(v2, ¥,y + vs, ¥y + v)}ss
+ {m2(0, v.)ma(v2, y)ma(y + 3, y + va)}usl-
The boundedness of w and (Cn/N) and the Li(Rs) property of & imply the

(7.11)
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first major term is O(By’). Further, by also using the integrability properties of
T2, 73, £ and w, the second and third major terms are seen to be O(By). By these
statements

limyw NBy' cov [gn™(p1, p2), g (us 5 pa)]
= limyaw (Bx'/(2r)*) [Xx -+ [Xx [Tvdor -+ dvady
eexp (—tuwr — tugve + tuavs + tuws)w(Byvi, Byve)
sw(Buws, BNW)(CN(W y v, Y)/N){me(0, viyme(ve , Y)ma(y =+ vs , Y + va)}1s .
Look at the 15 minor terms, listed by Table III, separately. The first term yields
limyow (By2/(2m)) [Xy -+ Y [Ty dvy - dvady
(7.12)  sexp (—tpwr — tpwe + tpevs + tpws)w(Buvi, Bave)w(Byvs, Byvs)
“(Cx(ny =+ 5 24, Y)/N)r(m)r(ne — y)r(vs — w).
Let9) =y — ve, 94 = vy — v3, 92 = Bywy, 93 = Byv; ; then (7.2) becomes
imuaw (27) ™ [Xx don[205, doof 203, dos XS0 doaf 2388080 dg
(7.13)  eexp {—tvur — e(ue/By) + 9s[(us + w4)/By] + Pusafw(Bavi, 92)
«w(—795 , By9s)[Cn(v1,(92/Bx), (93/Bx), 94+ (93/Bx), § + ($2/Bx))/N]
() (§)7(94).
An inspection of Fig. III reveals that (see [18] or [19])
(7.14) [Cn(v1, (»a/Bw), (vs/Bx), va + (vs/Bx), y + (v/Bx))/N]—lasN — .

Denote by [ Ju , the j-dimensional hypercube centered at the origin with sides
of length 2M parallel to the j axes. The dimension, j, will be obvious from the
context. Also let [ 1, denote the complement of [ ] in B; . We have the following
easy lemma (see [18] or [19]).

LemMa 4. The hypotheses of Theorem 5 imply that for any ¢ > 0, there is an
M;(€) independent of N such that for all M > M, and for all N,

JIT S four w(Bwvy, w)w(—vs, Buva)r(m)r(y)r(ve)| dwn -+ dndy < e.
Let
(M, N) = 2e)[[[[[dn - dnudy exp {—iv — iwa(ua/Bw)
+ wsl(ps + pa)/Bu] + waudw(Bavy , va)w(—vs , Byva)r(v1)r(y)r (),
(M) = limyae v1(M, N).

Lemma 4 and (7.14) indicate that the limit (7.13) is the same aslimy., v1(N, N).
Lemma 2 says that vi(M) = 0 unless ue = ps + s = 0. Using the boundedness
and continuity properties of w, Lebesgue’s convergence theorem, and Lemma 3;
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My v2(N, N) = (27) wif(0)f (1) () 8(12)8 (s + pa).
Minor terms 2 through 7 and 10 and 11 follow by similar arguments. Minor term
8 offers a slight variation. Put #3 = v; — v1, 92 = va — va, $1 = Bawn, 94 = Bwns
to get (omitting the ‘“hats”)
(20) ™ liMaeo Y28 (Y58 dyy dva [Xx 8500 dvafXRCE T8Ny dvs
eexp {n[(um — ws)/Bw] — tvapa + twsus + i (us — p2)/Bnl}
(7.15)  ~w(v1, Byve + vi)w(Bavs + v1, vs)
«[¥y dy[Cx((»/Bx) , v2 + (v4/Bw) , s + (»/Bw) , (vs/Bn), y)/N]

r(y)r(y + v)r(y — »).

Again it is seen that (Cy/N) — 1 as N — . Corresponding to Lemma 4 is the
following:

LeMMA 5. The hypotheses of Theorem 5 tmply that for any e > 0, there is an
M;(e) independent of N such that for all M > Ms(e) and for all N > M,

fffffDM dvy -+ dvadylw(v, Bava + va)w(Byvs + w1, v4)
r(y)r(y + va)r(y — n)| < e

Proof: The lemma follows using Schwarz’s inequality (see [18] or [19]). Q.E.D.
Define

vs(M, N) = (27f)_4 Y ou ffM dyy - -+ dvs dy exp {@n[(ur — us)/Bw] — tvape
+ dvaus + tva[(ue — n2)/Ballw(v., Bave + va)w(Bwvs + v1, vs)
r(y)r(y + v)r(y — »),
vs(M) = limy.. vs(M, N).
Lemma 2, Lebesgue’s theorem, and Lemma 3 gives minor term 8 as

limyaw vs(M, N) = (2r) " waf (ue)f(ua)f(ue + pa)d(wn — w)d(uz — pa).

Certain generalizations of Theorem 5 could readily be obtained. For example,
two weight functions, w; and ws, could be used; different (but interrelated)
sequences, {By"} and {Bx®}, could also be used; and as pointed out earlier
certain restrictions on w and the process could be relaxed slightly.

8. Further results. A later paper (part of the results to appear in this paper
are contained in Rosenblatt and Van Ness [18].) will discuss the estimates in the
discrete parameter case, in particular their asymptotic distribution which (for
certain processes) turns out to be complex normal with independent real and
imaginary parts. In the second and third-order results the assumptions that the
moment functions r(v) and 73(»1, ) are in L; were crucial to the estimation of
their transforms. When we go to higher order theory the assumption that
Pa(v1, **+, vaa1) € L1, n = 4 is too restrictive. This difficulty can be overcome
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by estimating the Fourier transforms of the cumulant funections, &.(v1, «* * , ¥a-z),
instead of the transforms of the moment functions. (This is actually what we’ve
done in the second and third-order cases since 7(v) = &(») and ry(vy, 1) =
&(v1, v2).) As stated earlier, the assumption &,(v1, - -, ¥a—1) € L1i(Rs—1) is not
so restrictive.
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