THE DISTRIBUTION OF HOTELLING’S GENERALISED T7T'¢

By A. G. CONSTANTINE

C.8.1.R.0., Adelaide, South Australia

1. Introduction and summary. The T¢*-statistic was introduced by Hotelling
{5], [6] as a measure of multivariate dispersion in connection with the problem of
testing the accuracy of bombsights. A similar statistic was considered earlier
by Lawley [10] as a generalisation of the F-test for testing significance in mul-
tivariate analyses of variance. In general, if the m X m matrices S; and S,
are independently distributed on 7n; and n, degrees of freedom respectively,
estimating the same covariance matrix, then T’ is defined by

T = Té/ny = tr SuSs .

For instance, in a one-way classification analysis of variance S; and S; may be
the “between classes” and ‘““within classes” matrices of sums of squares and
products. The matrix S; may be singular, i.e.; n; < m, but S, is assumed non-
singular. Assuming that one is sampling from a normal population, S, has the
Wishart distribution and S; the (possibly) non-central Wishart distribution if
ny = m. If n; < m, the distribution of T' may be obtained from that for n; = m
by a simple substitution (see Section 4).

Hotelling derived the distribution of 7' when n; = 1 (in which case T is the
generalisation of ‘“Student’s’ ¢ [4]) and for m = 2, [6]. In Section 4, the distribu-
tion of 7" will be derived for arbitrary m, n; and n. in the non-central case. More
precisely, if & is the matrix of non-centrality parameters, the probability density
function of T has the series expansion

(1) [Cm(3(m + n2))/T(3mna) T (3mg) ™ T
2ol (= T/ (Bmma) k1] 2o (3 (1 + m2)). L (9),

v =3im—m-—1), |T| < 1.
The functions L,”(2) are polynomials in the elements of @ and are extensions of
the classical Laguerre polynomials, to which they reduce when m = 1. They will
be defined and studied in Section 3. The constants and coefficients occurring in
the series are defined in Section 2. If @ = 0, the density function is
(2)  [Tw(3(m =+ n9))/T Gmm) T (Gna) 1T

Do [(=TY*/ (3mng) k] D e (3na)e(3 (1 + n2))Ci(I),
where C,(I) is the zonal polynomial evaluated at the identity matrix (see Sec-
tion 2).

Both series (1) and (2) converge only for [T| < 1. In the case m = 1, the
series in (2) reduces to the binomial series for (1 4+ T)7*™*? Unfortunately,
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this is not very useful since one is usually interested in the upper tail of the
distribution. However, it is hoped that the series may be simplified or be the
basis for further studies of the distributions.

In Section 5, the moments of T are given, again in terms of the generalised
Laguerre polynomials in the non-central case. As in the case of the F-distribu-
tion, only moments of sufficiently low order exist.

2. Notation and preliminary results. In the following sections, use will be
made of zonal polynomials and hypergeometric functions of matrix argument.
For convenience, those results required here are listed below. Definitions, proofs,
etc., may be found in the papers [7], [8] and [9] of A. T. James and [1] of
Constantme

Let S be a complex symmetric m X m matrix. Correspondmg to each parti-
tionk = (ky, ks, -, kn) of the integer k into not more than m parts, there is a
zonal polynomial C(S ) , see [7], [8]. C«(8) is a homogeneous symmetric polynomial
in the elements of S, and hence in the eigenvalues of S. An explicit formula for
C, is not known, but they can be relatively easily calculated and have been
tabulated by James [9] up to order 6. The value of the zonal polynomial at the
identity is known [1] to be

(3)  CuIn) = 2! Il (ps = 2)/pr L2t -+ pm 1(3M)s,
where p;= 2k; + m — 7, and
4) (@)= It(a—3G—=1))g, (a)s =ala+1)- - (a+n—1).

The generalised “binomial” type coefficient (@), will occur frequently in the
sequel. The fundamental property of the zonal polynomials, indeed almost the
defining relation, is the average over the orthogonal group, O(m), given by

(5) fo(m) CK(AHIBH) d(H) = CK(A)CK(B)/CK(I))

where the measure d(H) on O(m) is normalised to make the volume of O(m)
unity. (5) was proved by James [7].

For functions of matrix argument, there is the Laplace transform g(Z) =
[as0 € "*f(R) dR, the integral being taken over the space of positive definite
matrices, and the corresponding inverse transform

F(R) = 2"/ (2x0)™ ™) [rzy>x>0 € '"g(Z> dz,

where Z = X + Y, R(Z) = X is fixed and > K, for some X, > 0, and the
integration is over all real symmetric matrices Y. For a discussion of the Laplace
transform including conditions on f(R) and g(Z) for the integrals to converge
absolutely, the reader is referred to Herz [3].

The Laplace transform of the zonal polynomial is [1]

(6)  [rvo €™ "%(det R)*™VC(R)dR = Tm(a, «)(det Z)°C(Z7Y),

where

(7) Tn(a, k) = 7" P [ET(a + ks — 35 — 1)),
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and the integral converges for R(a) + k»n > 3(m — 1).If a is such that the
gamma, functions are defined then the binomial type coefficient (4) is

(8) (a)c = Tn(a, £)/Tm(a),  Tw(a) = Tum(a, 0).
The inverse form of (6) is then
(9) [277/(2m8) "] [rimyo €7 (det Z)°CU(Z7Y) dZ
= [1/Tw(a, ©))(det R)* ™0 (R).
An extension of (6) that will be useful later is the integral
(10)  [r>0 €™ **(det R)**™*C(R™) dR
= [(—=1)'Tw(a)/(=a + }(m + 1))d(det Z)™*Cc(Z),

valid for R(a) > ki + 3(m — 1). (10) may be proved in a manner similar to
(6) or, alternatively, by noting that

(det R)"C(R™") = [C(I)/C*(D)]Cw(R)
where n is any integer =ky and «* = (0 — kn, +++ ,n — ki).
The zonal polynomials may be used as a basis for symmetric functions, and a

number of important functions have simple expansions as series of zonal poly-
nomials. In particular, the exponential function has the expansion

(11) ettn = Z:-O Zx [CK(R)/kI],
and the “binomial”’ function has the expansion
(12) det (I — R)™ = 2050 2ok [(@)/KCK(R).

The generalised ‘“Bessel” function (Herz [3]) occurring in the non-central
Wishart distribution has the expansion [1]

(13) A4(R) = [1/Tm(y + 3(m + 1)1 200 2« [C(—R)/ (v + ¥(m +1))ck!].

3. The generalised Laguerre polynomials. The distribution of T, derived in
the next section, will be expressed as a series of generalised Laguerre polynomials.
They are polynomials in the elements of the m X m matrix S and reduce to the
classical polynomials when m = 1. Many of the results for the classical poly-
nomials generalise to the case of matrix variables, and some of these results will
be derived here. The reader is referred to Chapter 10 of “Higher Transcendental
Functions” by Erdelyi et al. for the case m = 1, especially Section 12. Our
definition parallels that of C. S. Herz [3] and the polynomials here are nor-
malised a little differently from those in [2].

For each homogeneous, symmetric polynomial ¢(R) in the m X m matrix R,
Herz defines the function L,"(S) by

™ 5L,7(8) = [a>0e" *(det R)"s(R)A,(RS) dR,

where v > —1, and the Bessel function 4, is given by (13). He showed that
L,"(8) is a polynomial of the same degree as s, and if o ranges over a basis for
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the homogeneous symmetric polynomials, then the L,” form a complete set of
polynomials in the L’-space of functions f(S) on S > 0 with respect to the
weight function w(S) = ¢"5(det 8)7, 8 > 0. Furthermore, if the degree o1
degree o , then L,, and L,, are orthogonal on S > 0 (with respect to the weight
function w(S)).

Here, we shall take the zonal polynomials as a basis for symmetric functions,

. and define

(14) e" L (8) = [rso €™ F(det R)"C.(R)A,(RS) dR.
Now the Bessel function has the integral definition
(15)  Ay(R) = 277/ (2mi)™ ] facaso €6 (det 2)77 dZ
where, throughout this section,
(16) p=3(m +1).
(15) may be proved by expanding exp (tr — RZ™") in zonal polynomials and
integrating term-by-term using (9). Substituting (15) in (14) and reversing
the order of integration,
(17)  L(8) = Tuly + p, 02"/ (2m) )
Srmso € (det Z)7PC (I — SZ7Y) dZ.

This last expression is seen to be the Laplace inverse of
(18)  [ss0 €™ *%(det S)"L.7(S) dS = Tw(v + p, «)(det Z2) " ?C(I —Z7).

Equation (17) allows the calculation of the Laguerre polynomials. Expanding
C(I — 827,
(19)  C(I — 8Z7)/C(I) = 2heo 220 (—1)"arnCW(8Z7)/Cu(1),
and performing the integration in (17) using (9),
(20) LJ(S) = (v + p)CelI) 2hmo (—1)"[ar,s/ (v + P)IC(S)/Co(I)].

An explicit formula for the a.,, is not known, but they may be readily calculated
from (19). They are tabulated up to order k¥ = 4 in an appendix at the end of
this paper. (20) shows that, in" general, L,"(S) is a polynomial of degree k in
S, unless S is singular when the degree may be less than k. Whenm = 1, S = s,
k = (k), L"(s) is readily seen to be identical with the classical Laguerre poly-
nomial as defined in [2], except for the constant k!. The polynomial in [2] is
(1/k!)L;"(s) in our notation.
From (20), the value of L,” at the origin S = 0 is seen to be

(21) L7(0) = (v + p)L(I).

Next, we consider a generating function for the Laguerre polynomials. If
m = 1, there is the well known result

(1 — 2)" " exp [=sZ/(1 — Z)] = 2= [Li(s)Z"/kl), 1zl < 1.

For arbitrary m this generalises in the following manner:
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TrarorEM 1. The generating function for the Laguerre polynomsials is
det (I — Z)™? [om exp (tr — SH'Z(I — Z)'H) d(H)
det (I — Z)7"77 2 w0 22 [C(=8)CU(Z(I — Z)7") /k! C(I)].
= 200 2 [L(8)C2) /R C(D))], 12l < 1.

Proor. Multiply the series on each side of (22) by exp (tr — SW)(det S)”
and integrate term-by-term over S > 0. Using (18), the right hand side be-
comes

Tn(y 4 p)(det W)™ P25 20 (v + p)Cu(Z)ClI — W) /! Cu(T)
Tu(y + p)(det W)™ [opm det (I — ZH'(I — W)H) """ d(H)
Tn(y + p)(det W) ™" ? det (I — Z)"?
Sowm det (I + Z(I — Z)H'WH) " ?d(H).
Using (6), the left hand side becomes
Tn(y + p)(det W)™ det (I — Z)7" 72250 20 (v + )«
BT = 20— W) k1 Cu(T)

(22)

It

Il

Il

which equals the previous expression. The theorem then follows by the unique-
ness of Laplace transforms. In this proof, the expansion (12) fordet (I — R)™""?
together with the averaging operation (5) have been used. Q.E.D.

The generating function can be used to show that L,"(S) and L,"(S) are
orthogonal unless x = ». This strengthens Herz’s result since he showed only
that polynomials of different degree are orthogonal.

TueoreM 2. L(8) and L,”(8) are orthogonal on S > 0 with respect to the
weight function

W(S) = " 5(det S)”,

unless k = v.

Proor. Multiply both sides of the generating function (22) by
e"5(det 8)” C,(S), where » is a partition of any integer n, and integrate
over S > 0. The left hand side becomes

det (I — Z)" [om [ssoexp (tr — S(I + H'Z(I — Z)™'H)) d(H)
-(det 8)"C,(S) dS = Tw(y + p, »)C.(I — Z)
by (6). The right hand side becomes
20 26 [C(Z) /C(IDkY [ 550 €™ *(det 8)"C,(S)L,(S) dS.

Now C,(I — Z) = (—1)"C,(Z) + terms of lower degree, so that comparing
coefficients of C,(Z) on both sides, we have

[ €™(det 8)"CL(S)L(S)dS = 0 fork = n,
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unless k = ». Hence L,"(8S) is orthogonal to all Laguerre polynomials of lower
degree, and since, from (20), L,"(S) = (—1)*C(S) + terms of lower degree,
it is also orthogonal to all Laguerre polynomials L,”(S) of the same degree unless
K = v.

Comparing coefficients of C,(Z) gives the L*-norm of L,” as

”Ll“y”2 = nl CV(I)Pm('Y + P, V)'

Q.E.D.

Finally, for examining the convergence of series, we need some estimates for
the Laguerre polynomials. The ones derived below are rather crude and could
be considerably improved, but they serve our purposes. In the case m = 1,
one can proceed as follows. First obtain an estimate for some special value of
v and then apply the formula ([2], p. 192)

(23)  T(/EDLE(s) = 2o [(B = ¥)m/m! (b — m) 1] Li_n(s).

We shall generalise this procedure.

THEOREM 3.
(24) ILES)| = (B + p)Cu(I)e™.
Proor. We first obtain an estimate for v = —1. The Bessel function A_;(R)

has the integral representation ([3], [9])
A4(R) = [1/Tn(3m)] fom exp (tr 2R°H) d(H),
and herllce [A_3(R)| £ 1/Tn(3m). Substituting this estimate in (14), with
Y= -3
(25) L3A(8) £ [1/Tm(3m)1e™ [as0 €™ "(det R)™ ¥ ™VC(R) dR
= (3m)LC(I)e™.
The next step is to generalise (23). The result is
(26) LS(S)/kLC(I) = 2022 20 [(B — )/t nllghlL,(8)/Co(D)],

where the summation is over all partitions 7 of { and » of n such that ¢ + n = k,
and g7, is the coefficient of C\(8) in C,(S)C,(8), i.e.

(27) C-(8)C,(S) = 2 x ghCu(S).

To prove (26), multiply both sides of the generating function (22) by
det (I — Z)"%®. The left hand side then becomes the generating function for

LX(8),
(28) 2 k=0 2k [LE(S)Cu(Z) /k! C(T)].
The right hand side is
det (I — Z)™® 3550 200 (L (8)CH(Z) /n! CW(T),

and we require the coefficient of C(Z) in the expansion of this product. Expand-
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ing det (I — Z)™ % in zonal polynomials as in (12), the term of degree 7 is
22 (B = 7):/t1C(Z) 22, IL(8)CH(Z) /0 Cu(2)],  t4n =k

Hence, multiplying the zonal polynomials according to (27) and comparing
coefficients of C«(Z) with (28) gives the required result.

We now apply (26) with v = —%. Substituting the estimate (25) for L,*(S),
one has

[LES)| = k1 Cu(I)e™ 3750 22, 20, [(B + 3)-(3m),/tinllgh,
and 'this sum is seen to be the coefficient of C,(Z) in the expansion of
det (I — Z)"®P det (I — Z)™™™ ie., of det (I — Z) ¥ Hence the sum
reduces to (8 + p)./k!. Q.E.D.

4. The distribution of 7. In Theorem 4 below, the distribution of T = tr 8;S; "
will be derived assuming that S; has the central Wishart distribution on n,
df and S; the non-central Wishart distribution on n; df, n; , n, = m. However, T
is well-defined even if ny < m. If n;, ne = m, it is known [1] that the density

function of the eigenvalues wy, wy, +--, w, of W = S,8;" is
(7" (3 (m + 12)) /T (31) Do (302) T (3m) Je™* (T] ) 7
(29) H (1 + wi)—%(nl+n2)Hi<j (wi _ ’w,~) ZZ;o Z‘

[ (A n2) )/ () JC(R) C(W (I + W) ) /1 Cu(1),

where © is the matrix of non-centrality parameters. If n; < m, S1S; " has only
n; non-zero roots and these have the density function obtained from (29) by
making the substitutions

(30) ny — m, ne — Ny + ng — m, m— n .

Now T = Y_ w;, and hence its distribution for n; < m can be obtained from its
distribution for n; = m by making the substitutions (30).

THEOREM 4. Let the m X m matrices S1 and 8. be independently distributed,
Se with the Wishart distribution on ny df and S with the non-central Wishart dis-
tribution on ny df and matriz of nmon-centrality parameters Q, the population co-
variance in each case being =. Then the density function of T = tr S,S;™" ¢s given by

(31) [Tm(2(n1 + n2))/Tm(in)T(3mny)Je™ T4
- i (=T Grmna) k] e (3 + ma))eLi(2),

where vy = 1(ny — m — 1), and L."(Q) s the generalised Laguerre polynomial
defined in Section 3. If @ = 0, the null density of T s

(32) [Tm(3(ma + 12))/Tm(3n2)T Gmn) 1T 30 [(— T)*/ (3man )ik )
e (3m)o(3(m + m2))Cu(T),

both series being convergent for |T| < 1.
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Proor. T is clearly independent of Z, so that the joint distribution of S,
and S; may be taken to be

(33) [ /Tm(3nz)]e™ %1e" %2 (det 81) ™™V (det S;) "V 4, (—08y),

where y = 3(n; — m — 1) and 4, is the Bessel function [1], [3]. The distribution
of T will be defined by inverting the Laplace transform

g(t) = Elexp (tr — S:8; )]

of its density function. Multiplying (33) by exp (tr — #S1S:"') and integrating
over S; > 0, we have

9(t) = [€""/Tu(3n2)] [sp0 €7 (det )" det (I + 18y7)7™
(34) cexp (tr QI + Sy H™) dS,
- [e"—Q/I‘m(%nz)]f%m"’ f82>0 etr—sz(det S2)’f(n1+n2—m—1)
~det(I 4 ¢785) 7" exp (tr Q'So(I + ¢7'82)™") dSs .

It appears very difficult to carry out the integration with respect to Ss in this
expression and obtain ¢(¢) explicitly. However, it is possible to perform the
Laplace inversion

(35) F(T) = (1/271) [Hiz &Tg(t) dt

first, and then integrate over S; .

First, we note that the distribution of T is clearly a symmetric function of
Q. Hence, making the transformation @ — H'QH in (34) and integrating over
H &£ O(m) using Theorem 1,

det (I + £782) ™™ [om exp (tr H'QH{'S,(I + t78:)™") d(H)
= o 2k [L(R)C(—'8) /K1 C(D)], v = 3(ng — m — 1).
Therefore
(36)  g(t) = [ "™/ T(3n2)] [5,50 €7 (det Sp) im0
© Dm0 2 [L(R)Ce(—7182) /K1 Co(1)] dSs -

Applying the estimate (24) for L ,"(Q2), we see that the series in (36 ) isdominated
termwise by the series

€™ Y e e () Ce(—1782) /1] = €™ det (I + ¢78,) 7.

Hence, for S; fixed, R(t) = csufficiently large, the series in (36) can be integrated
term-by-term with respect to ¢, the same being true for det (I + £'8,) 7, Since

(1/2x0) [Xi e  dt = T T (Smng + k),
we have
(37) f(T) = ["*/Tn(3na) T (3mna) IT"™ 7 [5,50 €7 (det Sy) ™m0
- 2ol (— T/ (mma )ik 1] 2oLk (2) Co(S2) /Ce(1)] dSs .
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Again applying the estimates for L,"(Q) in (37), we see that the series is
dominated termwise by the series ¢ > i [1/(2mny)ek!] D e (3n0)Ci(TSz) and,
since (3n1)/ (3mm1)r = 1 for all m, this series is dominated termwise by the
series

etrﬂ Zloco=0 Z" [Cx( _ TSz)/k '] — etrﬂetr~1‘82‘

Hence, the series in (37) may be integrated term-by-term for |T| < 1 to give the
required result.

Finally, (32) follows from (31) by putting @ = 0 and substituting the value
(21) of L,"(0). Q.E.D.

CoroLrary. The distribution of T for ni < m is obtained from (31) (and
Jrom (32) in the null case @ = 0) by making the substitutions (30).

We now consider the special case m = 1, in which case the series (32) and
(31) should reduce respectively to the density functions for the familiar variance
ratio F, and non-central F. If m = 1, only the partitions x = (k) into one part
occur, so that

(@) = o, Cw(l) =1, Q= w.
The series in (32) then becomes
2o [(B(ma 4 m))e( —T)*/k] = (1 + T)~Hmtno,

and hence F = (ny/n:)T has the variance ratio distribution on 7, and n, df as
required. The density function (31) becomes

[P(30u + n2))/T(3na)T (3na))e T 20l (3(ma + 12))a/ (3na) k]
L (w) (=T, v =4m— 1,
and according to [2], p. 215, formula 27, the series is
(1 + D)7 Pyt (m + me); dma s wT/(1 + T)].

Hence (n1/n;)T has the non-central F distribution. Similarly, if n, = 1, the
series reduce to the density functions for Hotelling’s generalisation of “Stu-
dent’s” ¢.

So far, it has proved impossible to simplify the series or to extend them beyond
|T] < 1. In the case m = 2, Hotelling [6] derived the null distribution of T in
the form

[T(n1 4+ ne — 1)/T(n)T(ng — 1)]ET)" (1 + L7) "t
oF1(1, 3(ny 4 me); (e + 1); 7%)

where r = $T/(1 4 %T), and ,F; is the Gaussian hypergeometric function. This
and other considerations suggest expressing the distributions as series in the
variable (T/m)/(1 4+ T/m), but no progress has been made in this direction.
Such series would probably converge for all values of T and would allow tabula-
tion of the distribution functions if they converged reasonably fast.
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6. The moments of 7. To calculate the moments, we commence with the
joint distribution of S; and S given by (33), and note that [6]

T* = (tr $u8:™")* = D, Co(S1S:7Y).
Therefore,
E(T*) = [6" % /Tn(3n2)] [ .50 [ 5,50 €™ F¢" 5 (det 8;) ™™
(et S) PV AL(—081) Dok Ce(S1S: ) dS1dS:, v = i — m —1).

The integration with respect to S, can be carried out for ny > 2k + m — 1 using
(10), and then the integration with respect to S; using (14). The result is

(38) E(T") = (—=1)" 2 [LI(—=2)/G(m +1—m))d, v=3(m—m—1),

if ne > 2k 4+ m — 1, the moments not existing otherwise. If @ = 0, L,"(0) =
(371).C(I), and (38) becomes

(39) E(T*) = (=1)* 22:[Gm)Cu(1)/(3(m + 1 — ma) ).

The first few moments are, from (39),
E(T) = mim/(ne — m — 1),
E(TY = mm(mnne — 2mn, — m'ny + 20y + 2ny — 2)/

(ne — m)(ng —m — 1)(ng — m — 3),

whence
Var (T)

=2nm(ne — 1)(ny +ne — m — 1)/(ne — m — 1)’(ng — m)(ng — m — 3).

APPENDIX

The values of a,,, up to order k¥ = 4 in the expression
ColI + A)/CAI) = 2750 220 aesCo(A)/Co(I).

Entries not shown in the tables are zero.

k=1 k=2
T T
« (0) €} x ©) ® @ (1)
(1) 1 1 (2) 1 2 1
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k=23
« (0) (1) ) (19) 3) (21) (19)
(3) 1 3 3 1
(21) 1 3 4/3 5/3 1
1% 1 3 3 1
k=4

« o wn @ @O @ @ @& @ 6 @ @) €@

(4) 1 4 6 4 1

(31) 1 4 11/3 17/3 6/5 14/5 1

(2% 1 4 8/3 10/3 4 1

(21%) 1 4 5/3 13/3 5/2 -3/2 1

(1*) 1 4 6 4 1
REFERENCES

[1] ConsTANTINE, A. G. (1963). Some non-central distribution problems in multivariate
analysis. ‘Ann. Math. Statist. 34 1270-1285.
[2] ErpELYI, ARTHUR ET AL. (1953). Higher Transcendental Functions 2 Ch. 10. McGraw-
Hill, New York.
[3] Herz, C. S. (1955). Bessel functions of matrix argument. Ann. of Math. 61 474-523.
[4] HoreLLING, H. (1931). The generalisation of Student’s ratio. Ann. Math. Statist. 2
360-378.
[5] HoreLLIiNG, H. (1947). Multivariate quality control, illustrated by the air testing of
sample bomb-sights. Techniques of Statistical Analysis, 11-184. McGraw-Hill,
New York.
[6] HoreLLING, H. (1951). A generalised T-test and measure of multivariate dispersion.
Proc. Second Berkeley Symp. Math. Statist. Prob. 23-42. University of California
Press.
[7] James, A. T. (1960). The distribution of the latent roots of the covariance matrix.
Ann. Math. Statist. 31 151-158.
[8] James, A. T. (1961). Zonal polynomials of the real positive definite symmetric matrices.
Ann. of Math. T4 456-469.
[9] JamEs, A. T. (1964). Distributions of matrix variates and latent roots derived from
normal samples. Ann. Math. Statist. 35 475-501.
[10] Lawrey, D. N. (1938). A generalisation of Fisher’s Z-test. Biometrika 30 180-187.



