POLYCHOTOMY SAMPLING!

By Saxrr P. Guosu

Thomas J. Watson Research Center, New York

1. Introduction. In sampling, one sometimes has to deal with a particular type
of binary character known as semi-observation-destructive (SOD) i.e., the action
of observing the particular character in the unit may result in destroying the
unit or leaving the unit unchanged. Such situations are encountered very often
in quality control or biological experiments, etc. So long as one is interested in
only one character of the unit, the situation does not present much of a problem;
but when one is interested in more than one SOD character, the situation be-
comes more complex because no further observations can be made on units
which are destroyed while a character is observed. Thus some combination of
characters cannot be observed and yet an estimate of their proportion may be
of interest. The aim of this paper is to illustrate how by splitting a single sample
into a number of subsamples and then making different types of observations
on different subsamples and by using the properties of Boolean algebra, estimates
of all possible combinations of characters can be built up. This problem with
two characters was first treated by Dalenius (1959). In that paper, the bivariate
case was discussed in detail, and it was also pointed out that the design could
be generalized to the case with three or more variates. The aim of the present
paper is to derive the variances of the different estimates possible. In order to
make the paper self-contained, an account is given of the content of Dalenius
(1959), which is written in Swedish and thus not generally available. Here the
bivariate situation will be treated first and the variances of the estimates given
by Dalenius will be presented. Some other new estimates with their variances
will also be presented. The sampling scheme will then be generalized to trivariate
situations. The multivariate generalization will not be treated because it will be
a simple extension of trivariate.

2. Bivariate sampling scheme and the estimates. Suppose 4 and B are two
binary characters of a bivariate population (4, B), i.e., there are only four dif-
ferent types of units viz (1, 1), (1, 0), (0, 1) and (0, 0). When one character is
being observed, the outcome will be denoted by 4(0) or A(1) or B(0) or B(1)
as the case may be. If A(0) is observed, then the unit is destroyed and no further
observation can be made on B. Similarly if B(0) is observed then the unit is
destroyed and no further observation can be made on A. The problem is to
estimate the proportion of (0, 0) in the population.

Suppose the total sample size available is . n is divided into two parts n; and
Ny, i.e., m1 + me = n. Then two samples of sizes n; and n, are drawn from the
population without replacement. In the sample n; , the character A is first ob-
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served, i.e., A(1) and A(0). All the units which had A(0) are destroyed and
hence no further observations can be made on them. Hence, among the units
which had A (1), B is observed and thus the number of units which have (1, 0)
and (1, 1) are obtained. Similarly, in the sample n. , B is first observed, i.e., B(0)
and B(1) and then among the B(1)’s (1, 1) and (0, 1) are obtained. The sampling
scheme is given in Figure 1. Suppose

n(1, 1) is the frequency of (1, 1) in the combined sample n.

n1(1, 0) is the frequency of (1, 0) in n; .
(1) n1(0, — ) is the frequency of (0, —) in n; .

n(0, 1) is the frequency of (0, 1) in %2 .

ne(—, 0) is the frequency of (—, 0) in n. .

p(1,1) = (1, 1)/n, p1(1,0) = n(1,0)/m1,
(2) p2(0, 1) = n2(0, 1)/n2,  p1(0, =) = (0, —)/m,
p2(—,0) = ny(—, 0)/ny .

Similarly P(%, j) shall denote the proportion of the character (4, 7) in the popu-
lation where the symbols ¢, j can represent 1, 0 or —. In the next few lines a little
of set theory will be used and there (7, ) will mean the set of points which have
the character (7,7).

From the self-evident pictorial diagram of sets in Figure 2, the estimates will be
derived.

The following set unions

(0, =) = (0,1) u (0, 0),

(=,0) =(1,0)u (0,0),
2= (1) u(0,-)u(-,0),
2=(1,1)u(1,0)u (0,1)u (0,0),
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suggest four estimates which were given by Dalenius (1959):

(3) por = p1(0, =) — p2(0, 1),

(4) Doz = p2(—, 0) — pu(1, 0),

() par = (1L, 1) + pi(0, =) + po(—,0) — 1,
(6) Per = 1 — p(1, 1) — ps(0, 1) — pu(1, 0).

8. Variances of the estimates of P(0, 0). The Equations (3), (4), (5) and (6)
give four different estimates of P(0, 0) and the form of their variances will be
discussed in this section. n;(1, 1), 71(1, 0) and 7:(0, — ) will follow a multinomial
distribution in the sample of size n; and similarly n2(1, 1), 72(0, 1) and ns(—, 0)
will follow a multinomial distribution in the sample of size n, . When the popu-
lation is assumed to be infinite then

V(p(1,1)) = P(1,1)Q(1,1)/n,
V(p(1,0)) = P(1,0)Q(1,0)/n1,
(7) - V(p(0,1)) = P(0, 1)Q(0, 1)/7ma,
Cov (p(1, 1), p(1,0)) = —P(1,1)P(1, 0)/n,
Cov (p(1, 1), p2(0,1)) = —P(1, 1)P(0, 1)/n,
where @ = 1 — P.
If the population is finite of size N then the above variances have to be multi-

plied by proper finite population corrections (fpe). The fpe for V(p(1, 1)) will
be (N — n)/(N — 1). The fpc for the others will depend on whether n; was
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drawn first or n, was drawn first. If n; was drawn first then
V(p:(1,0)) = [P(1,0)Q(1, 0)/m] (N — m)/(N — 1),
V(p(0,1)) = [P(0, 1)Q(0, 1)/ns]
(8) (N —m — ng)/(N —m— 1),
Cov (p(1, 1), pi(1, 0)) = [—P(1,1)P(1,0)/n]- (N — n1)/(N — 1),
Cov (p(1, 1), p2(0, 1)) = [-P(1, 1)P(0, 1)/n]
(N —m—n)/(N—m—1).
If n, was drawn first then
V(p«(1,0)) = [P(1, 0)Q(1, 0)/ni]
‘(N —n— ng)/(N —mp — 1),
(9) V(p2(0, 1)) = [P(0, 1)Q(0, 1)/ms]- (N — m2) /(N — 1),
Cov (p(1, 1), p(1,0)) = [—P(1,1)P(1,0)/n]
(N = — mg)/(N = my = 1),
Cov (p(1, 1), p(0, 1)) = [=P(1,1)P(0,1)/n]-(N — ne)/(N — 1).

For algebraic simplicity the effect of fpc will not be discussed in the subsequent
results. In deriving the variances of the estimates a few more symbols will be
needed. Though (0, 0) could not be observed in the sample they were present all
the time. Suppose

71(0, 0) is the frequency of (0, 0) in n;,

72(0, 0) is the frequency of (0, 0) in n,,

n(0, 0) is the frequency of (0, 0) in n,

p1(0, 0) = ni(0, 0)/n1,  p2(0, 0) = nx(0, 0)/ms.

The following lemma will also be of much use in deriving the variances:

LemmMa 1. Partition of a binomial variable leads to two uncorrelated variables.

Proor. Suppose X is b(n, v) and = is partitioned into two parts such that
2y + ne = n. Suppose X; and X, are the random variables denoting the binomial
character in n; and ng , respectively. Thus X = X; + X, . Hence

V(X) = V(X1) + V(X:) + 2Cov (X1, Xa)
or
nr(l — 1) = mr(1l — 7) + ngr(1 — 7) + 2 Cov (X1, Xy) & Cov (X1, X,) = 0.

The lemma is proved.
It is easy to see that (3) can be written as

(10) ﬁDl(Oy O) = pl(oy 0) + p1(07 1) - p2(07 1)'
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By application of Lemma 1 it can be shown that p:(0, 1) and p.(0, 1) are un-
correlated.
From (10) it follows that

V(9(0,0)) = P(0, 0)Q(0, 0)/n + P(0, 1)Q(0, 1)/m
(11) + P(0, 1)Q(0, 1)/n. — 2P(0, 0)P(0, 1)/ns
= P(0, 0)Q(0, 0)/nx + (n/mmz)P(0, 1)Q(0, 1)
— 2P(0, 0)P(0, 1)/n1 .

Proceeding exactly similarly the variance of $p2(0, 0) can be obtained as
follows:

(12) V(pe(0,0)) = P(0,0)Q(0, 0)/n.
+ (n/nm2)P(1,0)Q(1,0) — 2P(0, 0)P(1,0)/n, .
It is easy to show that
(0, =) + p(—, 0) = n1(0, 0)/n1 + n1(0, 1)/m1 + n2(0, 1)/n2 + (0, 0)/me
= p1(0, 0) + p2(0, 0) + pi(0, 1) + po(1, 0).
Hence, from (5) it follows,
pa(0,0) = p(1, 1) + p1(0,0) + p2(0,0) + ps(0, 1) + px(1,0) — 1.
Taking the variance and simplifying one gets
V(pa(0,0)) = (n/nmne)P(0,0)Q(0,0) + P(1,0)[Q(1,0) — 2P(0,0)]/n:
(13) + P(0, [Q(0, 1) — 2P(0, 0)]/m
— P(1,1)Q(1, 1)/n — 2P(1, 1)P(0, 0) /n.

The variance of pg2(0, 0) follows directly from (6) by taking variance of both
sides and is given by

(14) V(pex(0,0)) = P(1, 1)Q(1, 1)/n + P(0, 1)Q(0, 1)/ns
+ P(1,0)Q(1, 0)/m — 2P(1, )[P(0, 1) + P(1, 0) I/n,

Another form for V(pex(0, 0)): It is obvious that p(1, 1) = 1 — p(0, 1)
— p(1,0) — p(0,0). Substituting in (6) one gets Pa(0,0) = p(0, 1) + p(1, 0)
+ p(0,0) + p2(0,1) — p(1,0). Now

p(0, 1) — p2(0, 1) = (ny/n)p1(0, 1) — (n1/n)pa(0, 1),
p(1,0) — pi(0, 1) = (n2/n)p2(1,0) — (na/n)pa(1, 0).
Hence
De2(0, 0) = (ny/n)[p1(0, 1) — ps(0, 1)] + (na/n)[p2(1, 0) — pa(1, 0)].

Taking variance of both sides, making use of Lemma 1 and after simplification
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it follows,
(14")  V($a(0,0)) = P(0,0)Q(0,0)/n + (ny/nn2)P(0, 1)Q(0, 1)
+ (ne/nm)P(1, 0) Q(1,0) + 2P(0, 1)P(1, 0)/n.

On comparing (11), (12), (13) and (14) it is difficult to say in general terms
which of the four estimates is superior but it is obvious that the variances of (3),
(4) and (5) contains P(0, 0), whose magnitude is unknown and even cannot be
estimated from conventional sampling procedure. In this respect pe: is superior
to the other three. In the trivial situation when n; &~ nyand P(0, 1) &~ P(1,0) ~
P(1,1) ~ P(0, 0) it is expected

(15)  V(pee(0,0)) = V(par(0, 0)) £ V(6:(0, 0)) = V(p2:(0, 0)).

Various remarks can be made in special cases about the relative superiority of
these four estimates, but from all practical purposes it appears that $e2(0, 0) is

the best.
Mazimum likelihood estimate (mle) for bivariate sampling scheme. The mle of
P(0, 0) will be discussed here. The likelihood function is given by

L = [nl !/774(1, 1)!n1(1, 0)!%1(0, _)!][P(l, 1)]n1(1,1)[P(1, 0)],.1(1,0)
(16)  -[P(0,0) + P(0, 1) [ny Yna(1, 1)1 a(0, 1)1 ma(—, 0) ]
[P(L, DI*EV[P(0, IPPP(0, 0) + P(1, 0)]* .

The likelihood equations are obtained by differentiating In L — M(P(0,0) +
P(0,1) + P(1,0) + P(1,1) — 1] with respect to the parameters and equat-
ing them to zero. The likelihood equations are given by

m(0, —)/[P(0,0) + P(0, 1)] + ma(—, 0)/1P(0, 0) + P(1,0)] — X = 0,
n(0, —)/[P(0, 0) + P(0, 1)] + ms(0, 1)/P(0,1) — X =0,

(17) na(—, 0)/[P(0, 0) + P(1,0)] + m(1,0)/P(1,0) — A =0,
n(1,1)/P(1,1) — » =0,

P(0,0) + P(0,1) + P(1,0) + P(1,1) = 1.

For simplicity the algebraic details of solving (17) will not be given here. The
mle are as follows:

P(1,1) = n(1,1)/n,
P(1,0) = (1, 0)ln — n(1, 1)]/nlna — m(1, 1)],
(18) P(0,1) = ns(0, 1)[n — n(1, 1)]/n[ns — ne(1, 1)],
P(0,0) = {ln — n(1, 1)]/n}{n(—, 0)/[n2 — na(1, 1)]
— m(1, 0)/[ny — m(1, 1)]}.
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The variance and covariances can be calculated by using standard techniques.
The method used here was to find the matrix of the expectations of the second
derivatives of the logarithm of the likelihood function with respect to the param-
eters and then finding the inverse of the matrix with changed signs. (For no-
tational simplicity, P;; shall be used for P(%,7).) They are as follows:

V(P(0,1)) = Pu(l — Py — Po)/ne(1 — Pu)
+ PuPu/n(1 — Pu),

V(P(0,0)) = mmPou(l — Py — Pyu) + nmePoPu

(19) + 2n119P1oPolPu — 2nm2(1 — Pu)PolPu
+ nnePy(l — Py — Pl:)) + nmePioPu
+ nmaPu(1 — Py)’
— 2nmePuPu(l — Pu)l/nnme(l — Pu),
Cov (P(0, 1), P(1, 0)) = PwPuPu/n(1 — Pu).

The other second order moments are standard or can be obtained by inter-
change of subscripts.

ReMARK 1. Due to sampling fluctuation sometimes the estimates of P(0, 0) by
any of the methods discussed, may come out to be negative. In such cases, zero
may be taken as the estimate.

REMARK 2. Inthe special case when all the P(7, 7)’s are equal to  andn; = n,,
then V($a(0,0)) = V($e2(0,0)) = V(P(0,0)) = .34375/n;.

4. Trivariate sampling scheme. In this section the situation where each unit
has three (A4, B, C) SOD binary characters will be discussed. The problem is to
estimate the proportion of (0, 0, 0) in the population on the basis of a sample of
size n. The total sample size is divided into three parts n,, n,, nz such that
n = n; + n2 + n3 . Then three samples of sizes n; , ny , 13 are drawn without re-
placement from the population. The three characters, 4, B, C, are then observed
in a cyclic pattern as indicated in Figure 3. No attempt will be made to explain
the figure in words because it is self-evident from the explanations given for
Figure 1.

Letn(1, 1, 1) be the frequency of (1, 1, 1) in the combined sample n. n,(%, 5, k)
be the frequency of (<, 7, k) in the sample n; where 7, §, k represents symbols 0, 1
or—andl!=1,2,3.

Any triplet (4, 7, k) is observable provided it does not have two or more 0’s.
The observed n:(%, 7, k)’s correspond to the triplets shown in Figure 3.

(1, 1, 1) =n(1,1, 1)/77"
(20)  p(4, 4, k)

n:(4, 7, k)/ni where n; = m; or n, or n; depending on the
sample in which (4, 7, k) is observed,

P(4,j, k) = proportion of (%, j, k) in the population.
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The pictorial representation of Boolean functions of three or more variables can
be given neatly by Veitch diagrams. For three variables it is as in Figure 4.
Using standard notations of Boolean algebra it follows from the above Vitch

diagram, AB + BC + AC + ABC + ABC = Q. The left hand side represents a
simple Boolean function, hence

P(I)O)_) +P(_’170) +P(07 _)1)+P(1;1’1)+P(0)070) = 1.
Hence
(21) ﬁ(O,O; 0) =1- P(I,O, _) - p(—,l,O) - p(O) s 1) - p(]-) 1’ 1)-

Usually, it would be possible to build more estimates of P(0, 0, 0) under this
sampling scheme but because of the SOD nature of the characters it can be shown
by a simple enumeration method that p(0, 0, 0) is the only estimate of P(0, 0, 0)
possible by using Boolean algebra.

The variance of (0, 0, 0) is given by

V(f'(oy 0, O)) = P(ly 1, I)Q(l; 1, 1)/n + P(I;O; _)Q(l; 0, _)/nl
(22) + P(—,1,0)Q(—, 1,0)/n, + P(0, —, 1)Q(0, —, 1)/ns
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In case of finite population, a fpc term will have to be attached to each term on
the right hand side, but that situation will not be discussed here. The proportion
of various other non-observable triplets can be estimated from this scheme.

6. Optimum design for trivariate scheme. The free parameters in the sampling
design are n; , ny , and ng satisfying the restriction ny + n2 + 73 = n. The optimum
choice of the triplet (n1, ns2, n3) can be defined as the one which minimizes the
variance of the estimate subject to the restriction about the sum. Neyman’s well-
known technique can be applied to minimize (22) subject to ny + n, + ns = n.
The solutions are given by

m = [{P(1,0, —)Q(1, 0, —)}/ZIn,
m = [{P(—, 1,0)Q(—, 1, 0)}*/Z]n,
ns = [{P(O) ) I)Q(O; ) 1)}5/2]"’;
where
2z = [P(la O’ _)Q(I’ O’ _)]} + [P(_; 1’ O)Q(_; 1’ O)P
’ + [P((); ) I)Q(Oa ) 1)]*
A model sampling for bivariate was simulated on the IBM 7094 computer and
the results are given below:
The variance of each of the estimates had been calculated for 38 combinations
of P(0,0), P(1,0),P(0, 1), P(1,1) with n; = 70, n; = 30. The combinations vary
from (.10, .10, .20, .60) to (.70, .10, .10, .10). The variances vary from .0047

(Estimate G1 with .10, .10, .20, .60 probabilities and estimate ML with .30, .10,
.10, .50 probabilities) to .0183 (estimate ML with .20, .10, .60, .10 probabilities).
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