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1. Summary and introduction. Results of N weighing operations to determine

the individual weights of p objects, as envisaged in Hotelling’s weighing designs
[4], fit into the linear model Y = XB + ¢, where Y is an N X 1 random observed
vector of the recorded results of weighings; X = (2i;),¢=1,2,--- ,N,j =1,
2, -+, p,isan N X p matrix of known quantities with z;; = +1, —1 or 0, if,
in the sth weighing operation, the jth object is placed respectively in the left
pan, right pan, or in none; 3is a p X 1 vector (p = N) representing the weights
of the objects; e is an N X 1 unobserved random vector such that E(e) = 0
and E(ee’) = o’Iy . X represents the weighing design matrix. When X is of full
rank, that is, when XX is non-singular, the weights of the objects are given by
the least squares estimates, § = [X'X]XY. The covariance matrix is given by
Cov(B) = '[X'X]™" = ¢°C. cis , which is the 5th diagonal element of C, represents
the variance factor for the ¢th object. In weighing designs, we search for the
elements z;; such that c;; is the least for each 7.

When, however, X is singular, it is well known that, while it is not possible to
have a unique (unbiased) estimate for each of the p objects, it is possible to
have a unique (unbiased) estimate for a linear function, \'8, of the parameters,
if and only if there exists a solution for r in the equations Sr = \, where S =
X’'X. Raghavarao [7] visualized that bad designing, repetitions or accidents might
lead to singular weighing designs, and considered the question of taking addi-
tional weighings to make the resultant design matrix X of full rank maximizing
the resultant det. |X'X|, if possible, as required in Mood’s [5] efficiency defini-
tion. He appeared to take only the chemical balance (and not the spring bal-
ance) into consideration, and was eventually led to the question of dealing with
the situation when the rank of X was less than the full by only one.

In this paper, the problem is, in the first place, cast into the framework of a
generalized inverse (referred to as a g-inverse). Two harmonizing results in the
area of g-inverses are then indicated by way of an aid to algebraic simplifications
in the context of tackling the general problem. Singular weighing designs may
not perhaps all be altogether useless in themselves, although one may not adopt
singular weighing designs in a scheme of weighing operations to begin with.

In certain given situations, singular weighing designs may even be preferred
to the best available weighing designs adopted for the estimation of the weight
of each individual object, and, in such situations, there may arise a necessity
for comparing two singular weighing designs. Linking the problem of singular
weighing designs to a g-inverse, as has been done in this paper, would also help
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1022 K. S. BANERJEE

institute such a comparison. Consideration is further given to the situation when
the rank of X may be less than the full by more than one.
Finally, a special class of singular spring balance designs is also discussed.

2. Generalized inverse. In an attempt to provide a unified approach to least
squares theory with reference to the case when the matrix of normal equations
becomes singular, Rao [8] has suggested two computations of a g-inverse. (In this
context, the reader may also be referred to Price [6] and Zelen [10].) The com-
putation of one is exactly the same as that of a regular inverse when it exists.
The method of “sweep out’ is applied to the matrix A for which an inverse is
required, and the same operations are applied to an appended unit matrix,
until 4 reduces to H, and the unit matrix to B, such that BA = H, H is idem-
potent, AH = A, and ABA = A, where H has the form,

[ I ]Hm]
21 H=|-—-—-|.
00

In (2.1), Hy, is the reduced part of the corresponding portion of the matrix 4
on which the “sweep out” is applied. Here, B is a g-inverse. This inverse will be
referred to, in this paper, as the first g-inverse. [Incidentally, it may be pointed
out that a general solution of the equations Az = y is given by x = By +
(H — I)Z, where Z is an arbitrary column vector.]

Rao [8] mentions about a second g-inverse which always exists, although it
may not be unique. Given a matrix 4, there ex1st non-singular matrices Px
and Qs such that P+AQx = A, A = P*_IAQ,,= , where

and D, is a diagonal matrix of order r and rank r. Then, a g-inverse for 4 is de-
fined as A~ = Q«A Px, where

The g-inverse is such that A4"A = A and A"AA™ = A". This g-inverse Wlll be
referred to as the second g-inverse. When A is symmetrlc, Qs will be P4, and
A~ will also be symmetric. Using this second form of the g-inverse, the following
well known lemma may be easily proved

LemMA 2.1. If the linear function N8 is estimable, then the estzmatmg functwn
NB s umque and the variance of the estimate s given by V()\ B) = N8 \o’, where
B = 8 X'Y is a solution of the normal equations SB = X'Y, 8~ is a g-inverse of S,
and X s not of full rank.

In the context of singular weighing designs, a third form of a g-inverse (not
mentioned in Rao [8]) is suggested here. This third form is obtained by a slight
variation of the method as followed in the case of the second g-inverse. Let A =
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X'X = 8, where X is of dimensions N X p and rank r < p, and let it be pos-
sible to arrange the columns of X in such a manner that the » independent col-
umns take the first 7 positions. Then a g-inverse may be defined by S~ = P'As P,
where PSP’ = Ag, and P and P’ have similar operational significance as in the
second g-inverse, and where

Sui 0 Sl 0 Su | S
(22) As = ['—P‘E““} Ay~ = et ML }, S = [“B‘E"lf']
010 010 So1 1 Sz

It can be easily shown that for this g-inverse, SS™S = 8, S*SS™ = S~ and that
(878) is idempotent. The property of symmetry is also retained. In terms of
the symbols used in the other two g-inverses, X’X = S= A, S = A~ and Sy
= An, where A is partitioned as S. The second and third g-inverses will be
denoted in this paper respectively by S;” and S;~ for a distinction.

Lemma 2.2. If B is the first g-inverse of S, then H = BS = S S = S5 S,
where 8 = X'X, and X is of dimensions N X p and rank r < p.

Proor. Let
l: Sll i 812 :l
S=|-—-—-1,
S | Sas

where rank (Sy) = r. Consider the matrix,

Sui 0 I, | 0 Suw! o
B._—. ———-—: ————————— |- == = | === : ————— ,
0 1 Iy PZI:Ip—r P | Iy

where Pj; = —Si'Spz . Then, it is easy to show that
I, | SiiSn
H=BS =| -~
0! o0

B is a g-inverse of S of the 1st kind. We show now that a g-inverse of the 3rd
kind S; satisfies H = S; S. Let

and

Hence,
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Poi 0 [ I.i o Pui 0
P, =|---- ol | R e e e ,
0 |Ip—r_ P21!Ip—r P21!Ip—r

where Py is non-singular, satisfying P;;SuP1; = D, . Let

i
S~ = P,/ Lo (P
2 = * 0 } O * .

Then, the g-inverse of the 2nd kind satisfies,

Pu! Pu }[ I i 0 [ (P)™ | —(Pu)"'Pa
= -1} -1 - ——_————————
0 ! I, 00 0 I,

Lemma 23. S8 = Ay ,and S5 = A, .

And, S, is given by
Sy~ = Py/A7Py

| I |
I, } Py PuD,'Py! 0 I, } 0
= ——— e || e — || == |-———-
0 1 I 0 o JLPuil-

— . ’ -1 ’ /=1 q—1p—1 —1
= A, , Since PnDr Pu = P11P11 S1—1P11P11 = Su.

Rao [8] has shown with reference to the first g-inverse that A’3 is unique for all
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B satisfying 88 = X'Y, if H = )\'. It is otherwise well known, as pointed out
before, that, when X is not of full rank, an estimable linear function \'8 has a
unique estimate, if and only if there exists a solution for r in the equations
Sr = \. We now show that these two conditions are consistent.

LemMmA 2.4. The system of equations Sr = \ is consistent (has a solution, r), if
and only if, NH = \".

ProoF. Suppose Sr = \ is consistent. Then, NH = 'SH = ¢SS S =
7’8 = \'. On the other hand, if N'H = )/, then ' = M’S§™S = (8\)’S. Define
S™A = r. Then, Sr = \.

3. Singular weighing designs. It was pointed out in [1] that a weighing design
which is optimum for determination of the weight of each individual object may
not be the best for determination of the total weight; and, we may often be
interested in ascertaining the total weight. For example, we may like to know
the total weight of an object which has accidentally broken into pieces. A
singular weighing design does not furnish under non-randomized procedures
(see Zacks [9]) unbiased estimates of the individual weights, but it may furnish
the estimate of the total weight; and it may so happen that such a singular
design may even be better than an optimum non-singular weighing design which
is usually sought for in weighing operations. The example of the singular design
which has been optimized by Raghavarao [7] by the addition of one row is a
case in instance. The example is

1
1
-1
-1

(3.1) X =

P e e
S O =

The Design Matrix (3.1) is of rank 2, and is therefore singular. [X'X] is given by
4 0 2

(32) X'X]=|0 4 2{=8.
2 2 2

To reduce (3.2) to the form of A, (in this case, the same as A), we need to pre-
multiply it by a P and postmultiply by a P’. P, S8~ and H are given below:

s 0 1000 10
P = [“} S = [.9__25-_0_] H = [-9__1_-i__. -
-7 —z.1 0 00 0 00

It is noticed that if \" = (1, 1, 1), it is possible to have a unique estimate
(Lemma 2.4) for \'8, as we have N'H = ). Thus, although the design is singular,
it is possible to have an estimate of the total weight which may, at times, be
needed in practice. The variance of the total weight will, by Lemma 2.1, be

D= bl
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given by V(\'8) = NS5 Ao® which is the sum of all the elements of oS;~, as
A = [1, 1, 1]. Thus, the variance of the total weight is 162 Now, the best
chemical balance non-singular design for determining the weights of three objects
from four weighing operations is given by three columns of a 4 X 4 Hadamard ma-
trix, and the variance of the sum of weights for such a design would be given by
35°. The singular design under discussion would therefore be better than the
best non-singular weighing design, when it is required to have an estimate of the
total weight.

If it is desired to have an estimate of a linear function of the weights (e.g., the
total weight), we may institute a comparison of the merits of two singular weigh-
ing designs on the basis of the variance of the estimate. In this context, we may
think of the following singular weighing design, which has been obtained by a
slight variation of the Example (3.1),

1 1 1
(3.3) X=1—10
1 -1 0
1 —1 0

For the design in Example (3.3), P, S5, and H are given by

Here also, the total weight is estimable, and the variance of the estimate is o°.
The Singular Weighing Design (3.3), if used as one to determine total weight,
will thus be worse than both the Singular Design (3.1) and the optimum design
for 3 objects from 4 weighing operations, as referred to above. Comparison of
efficiencies between two singular weighing designs can thus be made from an
examination of the elements of S77.

4. Singular spring balance designs. Raghavarao [7] visualized three different
situations under which singularity of a weighing design could perhaps occur. In
fact, in spite of very good intentions on the part of an experimenter, a singular
weighing design might be encountered as will be evident from the following
context. De furnished by Mood [5] for the case N = p = 6 minimizing |X'X]|
was recognized [2] to be a Partially Balanced Incomplete Block (PBIB) design
with the parameters:

v=b=6, 7'=’C=3, A1=1, n1=4, >\2=2, n2=l,

. 21 , [40
Pi=l ol PE=ly ol

The above PBIB design would furnish, as pointed out by Mood [5], the most
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efficient non-singular spring balance design. This, however, does not mean that
all PBIB designs (when b = v) would furnish non-singular weighing designs,
although all Balanced Incomplete Block (BIB) designs, as a general rule, would
furnish efficient non-singular weighing designs (b = v). As some PBIB designs
furnish the most efficient spring balance designs [5], one might perhaps inad-
vertently adopt, with the best of intentions, any PBIB arrangement for a spring
balance design. We consider in this context the following example, where
N = p = 9. The design is furnished [3] by the blocks, (1, 2, 3), (4, 5,6), (7, 8, 9),
(1,7,5), (2,9,6), (1,8,6), (2,7,4), (3,9, 5), (3, 8, 4) with the parameters
as

U=b=9, 7'=k=3, 7\1=1, n1=6, K2=0, n2=2,

L 3 2 . 6 0
p"_20’ p”_Ol,

where the 9 varieties are denoted by the 9 numbers. The above is an example
of a PBIB design for m = 2 (i.e. two associate classes). For such a class of de-
signs, in general, when Pj; = 0, it is possible to group the varieties (in weighing
designs, the objects to be weighed) in such a manner that the varieties in a group
are only second associates. We will arrange the varieties (1, 2, 3, 4, 5,6,7, 8, 9)
in the order as (1, 4, 9, 2, 8, 5, 3, 7, 6), dividing the second associates into three
groups.

In BIB and PBIB designs, v and b are used to denote respectively the number
of varieties and the number of blocks. In weighing designs, v takes the place of
the number of objects to be weighed and b that of N, the number of weighings
than can be made. With this representation, X of the weighing design in the
above example would take the following form:

100100100
0100T100T10
001001001
100010001
(41) X=/0011000T10].
100001010
010100001
001010100
01000110 0

The arrangement is made in the above manner to secure internal symmetry in
[X'X]. [X'X] will have, in the diagonal, 3 diagonal matrices with 3 in the diagonal
and 0 as the off-diagonal elements. The other elements of [X'X] will be 1.
Design (4.1) is obviously a singular one. The rank is 7. It was pointed out
[2] that in the class of PBIB designs where the varieties are divisible into groups
as above, a condition that gives 0 value to the det. |[X 'X |is that r = (1 + n2)M .
This condition is satisfied. If we add the columns by three’s and subtract the
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sum of the first three from that of the second three and the third, we shall get 2
columns of zeros. We may, therefore, take the sixth and the ninth columns as
dependent, and the remaining 7 columns as independent. To make up the defi-
ciency of full rank, we would, therefore, add two more weighing operations
maximizing the resultant determinant |X'X/|, as per requirement of Mood’s effi-
ciency definition [5].

6. Maximization of the resultant determinant. In order to consider the ques-
tion of maximizing the resultant determinant, we propose to build up the alge-
braic steps in terms of the symbols used in Section (2) and we wish to proceed
as follows: We augment the design matrix X, which is of dimensions N X p
and of rank #(r < p), by adding to it (p — r) independent rows. Let A denote
the matrix of these independent rows. We arrange the columns of 4 in such a
manner that the (p — r) independent columns occupy the last (p — ») posi-
tions. Then, we partition X = [X;:X,] and A = [4:!4,], where X, denotes
the first r independent columns of X, and A, the last (p — r) independent
columns of A. Denoting the augmented matrix by

X X1 X,
F =|  -——= = ———ee ,
A 4, : 4,

we have F'F as given by

Su i S Aul A
(5.1) FF = [~~—“—I<—P—] + [-—51—I——‘—2—] = I8 + 7],
So1 | Soe An | Agp

where Su = Xi'X1, S = Xi'Xe, Su = Xo'Xy, 8w = Xo'Xs, Au = A4y,
Ap = A4y, Ay = ASA,, Ay = A5A;, and S and T are the two matrices
consisting respectively of the elements S;; and 4,;(¢,j = 1, 2). If we premultiply
the Matrix (5.1) by P and postmultiply by P’, where P and P’ are as defined
in Section (2), we would get S reduced to Ag, T to U and the whole right hand
side of (5.1) to

Sul 0 Uni U
(5.2) Ay + U = —=1-——— | 4+ | ===~ |,
00 Uan! Ux

where
Uy = Au = 444, Up = APy + A = A)[4; + A1Pi),
Uy = PudnPs + AnPiy + Pudy, + As = [4s + A:1P3]'[As + AiPy),

and Upy as the transpose of Ui, . It is to be noted here that 4, and A4, are such
that Uy 5 0. We now premultiply and postmultiply (5.2) by R and R’, where
R is a reduced unit matrix and will be of the form as given by
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where Ry, has a similar meaning as Py, in P of Section (2). These multiplica-
tions will not alter Ag and Us; . Remembering that the determinant of a reduced
unit matrix is unity, |F'F| would reduce to

|F'F| = |Sul |Y'Y],

where Y is given by [A; + A1P3]. Thus, given X, maximization of |F'F|, which
we would need as per Mood’s efficiency definition [5], would depend on the
maximization of |Y'Y|. Freedom of choice of elements of Y is thus further re-
stricted by the fact that ¥ involves elements of the given matrix X. [We use
the expression “further’’ here because in weighing designs we choose the ele-
ments z;; of X so as to maximize the det. | X'X| as per Mood’s efficiency defini-
tion [5]. The restriction imposed in the choice is that the elements have to be
either 1, —1, 0 in a chemical balance, or 1, 0 in a spring balance.] A reference
to equation (2.4) would reveal that P;; = —J of Raghavarao [7]. The value
of the det. |F'F| would reduce to | X, Xy| |[[4d: — A:J][A; — A4J]| in terms of
the symbol J used in [7]. One might perhaps prefer Ps; to the form J = St S
as in many situations it may be relatively much simpler, as we shall presently
see, to find Py, rather than to evalute St .

If the last (p — r) independent columns were allowed to take the first (p — )
positions and the entire operation connected with the method of “sweep out”
repeated, the factor |Sy| of |[F'F| would be have been replaced by the determi-
nant of A which is contained in Uy = Y'Y. Thus, it would be clear that to
secure maximization of |F'F| we would need also to maximize |[As|.

For the example of Singular Design (3.1), Ps; = [—%, —3]". For |4x| to be
maximum, we may take 4, = —1 or +1. If it is —1, A4, is easily seen to be
[1, 1]. If, however, it is +1, 4; will be [—1, —1]. Both these rows maximize
|Y'Y|. In fact, these two rows are virtually the same, as we can always change
the signs of an entire row without affecting the design. That 4, could also be
equal to 41 does not appear to have been recognized in [7].

If it is not required to augment the design matrix X by the addition of a
large number of rows, one can easily find by inspection the elements of A =
[4;, A;] to maximize |Y'Y|.

Design (3.1) is such that the third column is half the sum of the elements in
the first two columns. Let us add to it a fourth column which is half the differ-
ence of the elements in the first two columns. The resultant design matrix will
be of dimensions 4 X 4, and of rank 2. We may therefore add two rows to make
the resultant design matrix of full rank, maximizing the determinant |Y’Y|. For
this design, P31, St , H, A; and A, are given by

’ -5 — 1 1 0 = ;% %1
Py = |:_ + ]7 Su = [8 l]y H = ___:_7_____,7__ )
* 0! 0
1 1 -1 1
Ay = . A= .
1 -1 -1 -1

[ R
Nl ol
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The value of |F'F| = |Su| |Y'Y| = 4°-5°

From H, we can find what linear combmatlons are estimable. In this case,
the sum of the weights is not estimable, as we see that N'H 5 N, with \’
L, 1,1, 1].

Instead of multiplying examples for the chemical balance, we would consider
the problem of augmentation with reference to the example of PBIB design as
in (4.1). Rank of the matrix is 7, as pointed out before, and we need to add
only two rows. The sixth and the ninth columns may be shifted to the outermost
positions.

We explained before what would be the constitution of the 9 X 9 matrix
S = X'X. Although there is symmetry in 8, it would need quite an effort to
evaluate S11'Sis, where Sy is of dimensions 7 X 7. We would therefore try to
find Pz, . It can be very easily seen that Py will be of the form as given by

1100
001 1]
It may be recalled here that the elements of X for a spring balance design

can only be 1 or 0. Hence, a maximum |Ay| can only be given by an 4., if 4,
is of the following form:

10 01
Az = , Oor, A2 = .
01 10

By inspection of 4, in conjunction with 4,P3; , we can see that we should take
the first form of A, , and A; maximizing |Y'Y| will then be given by

0001100
A1 = 5
0000011
so that the two rows to be added would be
000110010
00000T1T10 1]
The above two rows are given by the blocks with varieties (2, 8, 5) and (3, 7, 6)
Addition of the above two rows would make the value of the det. |V’ Y|
while the value of [Su| = 3°. Thus, the value of maximized |[F'F| = 3. Tt may
be remarked here that if we add the blocks (1, 4, 9), (2, 8, 5) and (3, 7, 6) to
X, WegetaBIBdes1gnW1thv =9,b=12,r =4,k =3and\ = 1,and it is
known that BIB designs in general furnish [1, 5] optimum spring bala,nce de-
s1gns In case of this BIB design, the value of the corresponding det. |X'X| =
3°.4. Thus, increase of weighing operations to 12 from 11 as obtained by the
addition of two rows to a 9 X 9 singular design increases the value of the

det. | X'X| four fold.
It is interesting to note here that the two rows which were added through

Wl ool

(5.3) P = [—

= col=
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the principle of maximization of the determinant to the singular design are
given by the last two of the three blocks which bring up the PBIB design (singu-
lar) to a BIB design (non-singular).

H for this singular design can be obtained by bordering an I on the right by
= Pj obtained from (5.3), and below by 0's. From H, and the relationship
NH = )\ we can easily find (Lemma 2.4) what linear functions will be estimable.
It will be noticed that the sum is not estimable in this case, but a function such
as N8, with A = [1,1,1,1,1,1, 1, —1, —1], is estimable. On the basis of the
variance of this linear estimate, the PBIB design under discussion may be com-
pared with the best available BIB design with the parameters, » = 9, b = 12,
r = 4,n = 3and A = 1, as referred to before. To calculate the variance under
the PBIB design, we would need to know 83 occurring in Ags~. S5 is shown

below:

7 4 4 1 _1 _1 _17
) ) ) 3 3 3 3
4 7 4 —1 —1 —1 —1
) k) 9 3 3 3 3
4 4 7 _1 _1 _1 _1
1 ) 9 9 3 3 3 3
—L 1 1 1 2 1
Su=|-% —% -3 3 3§ 0 O
1 1 1 1 2
-3 -3 —3 3 % 0 O
1 1 1 2 1
-3 —3 —3 0 0 3 3
1 1 1 1 2
| -3 —3 —35 0 0 R

The variance of the above mentioned linear function, as estimated from the
PBIB design, will be the sum of the elements of Si;' multiplied by ¢°. The sum
of the elements is unity. Hence, the variance is ¢°. This design has 9 weighing
operations. For the above BIB design with twelve weighing operations which
is the best available spring balance design for individual weights for the given
parameters, the diagonal elements of the corresponding [X’'X]™ will be 4%, and
the off-diagonal elements —4. Hence, the variance of the above linear func-
tion will be (§2)¢” which is larger than ¢°. Thus, the PBIB design under dis-
cussion may be preferred for the estimation of a linear function such as this or
similar functions.
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